问题描述
在老电影“007之生死关头”(Live and Let Die)中有一个情节,007被毒贩抓到一个鳄鱼池中心的小岛上,他用了一种极为大胆的方法逃脱 —— 直接踩着池子里一系列鳄鱼的大脑袋跳上岸去!(据说当年替身演员被最后一条鳄鱼咬住了脚,幸好穿的是特别加厚的靴子才逃过一劫。)
设鳄鱼池是长宽为100米的方形,中心坐标为 (0, 0),且东北角坐标为 (50, 50)。池心岛是以 (0, 0) 为圆心、直径15米的圆。给定池中分布的鳄鱼的坐标、以及007一次能跳跃的最大距离,你需要告诉他是否有可能逃出生天。
输入格式:
首先第一行给出两个正整数:鳄鱼数量 N(≤100)和007一次能跳跃的最大距离 D。随后 N 行,每行给出一条鳄鱼的 (x,y) 坐标。注意:不会有两条鳄鱼待在同一个点上。
输出格式:
如果007有可能逃脱,就在一行中输出"Yes",否则输出"No"。
输入样例 1:
14 20
25 -15
-25 28
8 49
29 15
-35 -2
5 28
27 -29
-8 -28
-20 -35
-25 -20
-13 29
-30 15
-35 40
12 12
输出样例 1:
Yes
输入样例 2:
4 13
-12 12
12 12
-12 -12
12 -12
输出样例 2:
No
#include<iostream>
#include<string>
#include<cmath>
using namespace std;
struct node{
int x;
int y;
}p[101];
int visited[101];
int flag = 0;
int n,d;
bool jump(int v, int x){
//v代表本条鳄鱼 x代表周围的鳄鱼
int d1 = pow(p[x].x-p[v].x,2) + pow(p[x].y-p[v].y,2);
if(d * d >= d1){
return true;
}
return false;
}
bool first(int x)
{
int d1 = pow(p[x].x,2)+pow(p[x].y,2); //湖心岛中心距离周围的鳄鱼的距离
int d2 = pow((7.5+d),2); //湖心岛半径加上人能跳到的距离
if(d2 >= d1){
return true;
}else{
return false;
}
}
bool success(int x)
{
if(50-p[x].x <= d || 50-p[x].y <= d){
return true;
}
return false;
}
void dfs(int v)
{
visited[v] = 1; //标记这条鳄鱼已踩过
if(success(v)){
flag = 1;
}
for(int i = 0; i < n; i++){
//循环判断这条鳄鱼周围有没有能踩的鳄鱼
if(!visited[i] && jump(v,i)){
dfs(i);
}
}
}
int main()
{
cin>>n>>d;
for(int i = 0; i < n; i++){
cin>>p[i].x>>p[i].y;
}
for(int i = 0; i < n; i++) visited[i] = 0;
if(d >= 50 - 7.5){
printf("Yes");
return 0;
}
for(int i = 0; i < n; i++)
{
if(!visited[i] && first(i)){
//如果这条鳄鱼没有踩过,并且从湖心岛到鳄鱼的距离足够
dfs(i);
}
}
if(flag == 1){
printf("Yes");
}else{
printf("No");
}
return 0;
}
java代码
import java.util.LinkedList;
import java.util.List;
import java.util.Scanner;
class Point{
int x;
int y;
public Point(int x, int y) {
super();
this.x = x;
this.y = y;
}
}
public class Main {
static final int N = 101;
static int vis[] = new int[N];
static int n,d; //n鳄鱼个数 d跳跃距离
static Scanner sc = new Scanner(System.in);
static Point p[] = new Point[N];
static boolean flag = true;
static boolean first(int x) {
double d1 = Math.pow(p[x].x, 2) + Math.pow(p[x].y, 2);
double d2 = Math.pow(7.5+d, 2);
if(d2 >= d1) {
return true;
}
return false;
}
static boolean success(int x) {
if(Math.abs(p[x].x) + d >= 50 || Math.abs(p[x].y) + d >= 50) {
return true;
}
return false;
}
static boolean dis(int x,int y) {
double d1 = Math.pow(p[x].x - p[y].x, 2) + Math.pow(p[x].y - p[y].y, 2);
if(d * d >= d1) {
return true;
}
return false;
}
static void dfs(int x) {
vis[x] = 1;
if(success(x)) {
flag = false;
return ;
}
for(int i = 0; i < n; i++) {
if(vis[i] == 0 && dis(x,i)) {
dfs(i);
}
}
}
public static void main(String[] args) {
n = sc.nextInt();
d = sc.nextInt();
int x,y;
for(int i = 0; i < n; i++) {
x = sc.nextInt();
y = sc.nextInt();
p[i] = new Point(x,y);
}
if(50 - 7.5 <= d) {
System.out.println("Yes");
return ;
}
for(int i = 0; i < n; i++) {
if(first(i) && vis[i] == 0) {
dfs(i);
}
}
if(flag) {
System.out.println("No");
}else {
System.out.println("Yes");
}
}
}