平面(拉伸)失真的修正

平面(拉伸)失真的修正

Written by  Paul Bourke
November 1989

以下的数学运算和图示来自于一个 修正 通过照片求一块平整土地面积 的失真 的项目。这些照片是从多个角度对地面进行拍取而来,所以需要让它们的形状变得更直观才能计算它们相的对应面积(乘以比例尺就是实际面积)。同样的技术当然也可以应用到故意让矩形面积失真的场景中。

常规的方法(笛卡尔坐标)都是通过两个坐标定义二维空间的点(这样的点在整个笛卡尔坐标系中具有唯一性)。 以下的单位正方形,我们把P点的两个坐标分别叫做mu和delta, 它们是P点沿着水平和垂直方向上相对于正方形边缘的距离。

假设上述的正方形只发生了线性失真(拉伸),那么其内部的网格上的点的值也会发生失真。但是P点相对于两连接边(边P0P1和边P0P3)的距离却是保持不变的

为了修正多边形内任意点P得失真,我们需要找出失真比率mu和delta。已知点A可以表示为:

点B可以表示为:

那么位于AB上的点P可表示为:

 

把点A、B代入点P,可算得任意点P坐标:

分别点P0, P1, P2和P3在X轴和Y轴的坐标值代入以上等式(叫它做等式1),可以得出(分别叫做等式2,3):

联合等式2,3消去未知数delta,可以得到以下一元二次方程:

其中

解出mu后,回代等式2或3可解出delta.

内容概要:本文档提供了三种神经网络控制器(NNPC、MRC和NARMA-L2)在机器人手臂模型上性能比较的MATLAB实现代码及详细解释。首先初始化工作空间并设定仿真参数,包括仿真时间和采样时间等。接着定义了机器人手臂的二阶动力学模型参数,并将其转换为离散时间系统。对于参考信号,可以选择方波或正弦波形式。然后分别实现了三种控制器的具体算法:MRC通过定义参考模型参数并训练神经网络来实现控制;NNPC利用预测模型神经网络并结合优化算法求解控制序列;NARMA-L2则通过两个神经网络分别建模f和g函数,进而实现控制律。最后,对三种控制器进行了性能比较,包括计算均方根误差、最大误差、调节时间等指标,并绘制了响应曲线和跟踪误差曲线。此外,还强调了机器人手臂模型参数的一致性和参考信号设置的规范性,提出了常见问题的解决方案以及性能比较的标准化方法。 适合人群:具备一定编程基础,特别是熟悉MATLAB编程语言的研究人员或工程师,以及对神经网络控制理论有一定了解的技术人员。 使用场景及目标:①理解不同类型的神经网络控制器的工作原理;②掌握在MATLAB中实现这些控制器的方法;③学会如何设置合理的参考信号并保证模型参数的一致性;④能够根据具体的性能指标对比不同控制器的效果,从而选择最适合应用场景的控制器。 其他说明:本文档不仅提供了完整的实验代码,还对每个步骤进行了详细的注释,有助于读者更好地理解每段代码的功能。同时,针对可能出现的问题给出了相应的解决办法,确保实验结果的有效性和可靠性。为了使性能比较更加公平合理,文档还介绍了标准化的测试流程和评估标准,这对于进一步研究和应用具有重要的指导意义。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值