两线段相交判断方法

一.矢量基本知识
      因为后面的计算需要一些矢量的基本知识,这里只是简单的列举如下,如果需要更加详细的信息,可以自行搜索wikipedia或google。
1.矢量的概念:如果一条线段的端点是有次序之分的,我们把这种线段成为有向线段(directed segment)。如果有向线段p1p2的起点p1在坐标原点,我们可以把它称为矢量(vector)p2。
 
2.矢量加减法:设二维矢量P = ( x1, y1 ),Q = ( x2 , y2 ),则矢量加法定义为: P + Q = ( x1 + x2 , y1 + y2 ),同样的,矢量减法定义为: P - Q = ( x1 - x2 , y1 - y2 )。显然有性质 P + Q = Q + P,P - Q = - ( Q - P )。
3.矢量的叉积:计算矢量叉积是与直线和线段相关算法的核心部分。设矢量P = ( x1, y1 ),Q = ( x2, y2 ),则矢量叉积定义为由(0,0)、p1、p2和p1+p2所组成的平行四边形的带符号的面积,即:P × Q = x1*y2 - x2*y1,其结果是一个标量。显然有性质 P × Q = - ( Q × P ) 和 P × ( - Q ) = - ( P × Q )。一般在不加说明的情况下,本文下述算法中所有的点都看作矢量,两点的加减法就是矢量相加减,而点的乘法则看作矢量叉积。
叉积的一个非常重要性质是可以通过它的符号判断两矢量相互之间的顺逆时针关系:
  若 P × Q > 0 , 则P在Q的顺时针方向。
  若 P × Q < 0 , 则P在Q的逆时针方向。
  若 P × Q = 0 , 则P与Q共线,但可能同向也可能反向。
 
4.折线段的拐向判断:折线段的拐向判断方法可以直接由矢量叉积的性质推出。对于有公共端点的线段p0p1和p1p2,通过计算(p2 - p0) × (p1 - p0)的符号便可以确定折线段的拐向:
  若(p2 - p0) × (p1 - p0) > 0,则p0p1在p1点拐向右侧后得到p1p2。
  若(p2 - p0) × (p1 - p0) < 0,则p0p1在p1点拐向左侧后得到p1p2。
  若(p2 - p0) × (p1 - p0) = 0,则p0、p1、p2三点共线。
这一条判断也可用来判断点在线段或直线的哪一测。
 
2个线段相交判定:
 

(1) 快速排斥试验

    设以线段 P1P2 为对角线的矩形为 R , 设以线段 Q1Q2 为对角线的矩形为 T ,如果 R 和 T
不相交,显然两线段不会相交。

(2) 跨立试验

     如果两线段相交,则两线段必然相互跨立对方。若 P1P2 跨立 Q1Q2 ,则矢量 ( P1 - Q1 ) 和
 ( P2 - Q1 ) 位于矢量 ( Q2 - Q1 ) 的两侧,
即 ( P1 - Q1 ) × ( Q2 - Q1 ) * ( P2 - Q1 ) × ( Q2 - Q1 ) < 0 。
上式可改写成 ( P1 - Q1 ) × ( Q2 - Q1 ) * ( Q2 - Q1 ) × ( P2 - Q1 ) > 0 。
当 ( P1 - Q1 ) × ( Q2 - Q1 ) = 0 时,说明 ( P1 - Q1 ) 和 ( Q2 - Q1 ) 共线,
但是因为已经通过快速排斥试验,所以 P1 一定在线段 Q1Q2 上;
同理, ( Q2 - Q1 ) ×(P2 - Q1 ) = 0 说明 P2 一定在线段 Q1Q2 上。
所以判断 P1P2 跨立 Q1Q2 的依据是:
( P1 - Q1 ) × ( Q2 - Q1 ) * ( Q2 - Q1 ) × ( P2 - Q1 ) >= 0 。
同理判断 Q1Q2 跨立 P1P2 的依据是:
 ( Q1 - P1 ) × ( P2 - P1 ) * ( P2 - P1 ) × ( Q2 - P1 ) >= 0 。

代码如下:
double mult(struct line A,struct line B)
{
    double x1 = A.x2 - A.x1,y1 = A.y2 - A.y1;
    double x2 = B.x1 - A.x1,y2 = B.y1 - A.y1;
    double x3 = B.x2 - A.x1,y3 = B.y2 - A.y1;
    return (x1 * y2 - y1 * x2) * (x1 * y3 - y1 * x3);
}
if(mult(p[i],p[j]) <= 0 && mult(p[j],p[i]) <= 0 &&
                   max(p[i].x1,p[i].x2) >= min(p[j].x1,p[j].x2) &&
                   max(p[j].x1,p[j].x2) >= min(p[i].x1,p[i].x2) &&
                   max(p[i].y1,p[i].y2) >= min(p[j].y1,p[j].y2) )

return true;
return false;


 
 
 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值