PyTorch梯度裁剪避免训练loss nan的操作

近来在训练检测网络的时候会出现loss为nan的情况,需要中断重新训练,会很麻烦。因而选择使用PyTorch提供的梯度裁剪库来对模型训练过程中的梯度范围进行限制,修改之后,不再出现loss为nan的情况。

PyTorch中采用torch.nn.utils.clip_grad_norm_来实现梯度裁剪,链接如下:

torch.nn.utils.clip_grad — PyTorch 1.10 documentation

训练代码使用示例如下:

1

2

3

4

5

6

7

8

from torch.nn.utils import clip_grad_norm_

outputs = model(data)

loss= loss_fn(outputs, target)

optimizer.zero_grad()

loss.backward()

# clip the grad

clip_grad_norm_(model.parameters(), max_norm=20, norm_type=2)

optimizer.step()

其中,max_norm为梯度的最大范数,也是梯度裁剪时主要设置的参数。

备注:网上有同学提醒在(强化学习)使用了梯度裁剪之后训练时间会大大增加。目前在我的检测网络训练中暂时还没有碰到这个问题,以后遇到再来更新。

补充:pytorch训练过程中出现nan的排查思路

1、最常见的就是出现了除0或者log0这种

看看代码中在这种操作的时候有没有加一个很小的数,但是这个数数量级要和运算的数的数量级要差很多。一般是1e-8。

2、在optim.step()之前裁剪梯度

1

2

3

4

optim.zero_grad()

loss.backward()

nn.utils.clip_grad_norm(model.parameters, max_norm, norm_type=2)

optim.step()

max_norm一般是1,3,5。

3、前面两条还不能解决nan的话

就按照下面的流程来判断。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

...

loss = model(input)

# 1. 先看loss是不是nan,如果loss是nan,那么说明可能是在forward的过程中出现了第一条列举的除0或者log0的操作

assert torch.isnan(loss).sum() == 0, print(loss)

optim.zero_grad()

loss.backward()

# 2. 如果loss不是nan,那么说明forward过程没问题,可能是梯度爆炸,所以用梯度裁剪试试

nn.utils.clip_grad_norm(model.parameters, max_norm, norm_type=2)

# 3.1 在step之前,判断参数是不是nan, 如果不是判断step之后是不是nan

assert torch.isnan(model.mu).sum() == 0, print(model.mu)

optim.step()

# 3.2 在step之后判断,参数和其梯度是不是nan,如果3.1不是nan,而3.2是nan,

# 特别是梯度出现了Nan,考虑学习速率是否太大,调小学习速率或者换个优化器试试。

assert torch.isnan(model.mu).sum() == 0, print(model.mu)

assert torch.isnan(model.mu.grad).sum() == 0, print(model.mu.grad)

 

  • 1
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: PyTorch梯度裁剪是指对模型训练中的梯度进行限制,以防止梯度爆炸或梯度消失的问题。在PyTorch中,可以使用``torch.nn.utils.clip_grad_norm_``函数对模型的梯度进行裁剪。 该函数的输入参数包括模型参数,裁剪阈值(clip_value),以及裁剪类型(clip_type)。裁剪类型可以是norm或value。norm表示对梯度的范数进行限制,而value表示对梯度的数值进行限制。 下面是一个使用梯度裁剪的示例代码: ```python import torch.nn.utils as torch_utils # 定义模型 model = ... # 定义损失函数 criterion = ... # 定义优化器 optimizer = ... # 训练模型 for epoch in range(num_epochs): for inputs, targets in data_loader: # 前向传播 outputs = model(inputs) loss = criterion(outputs, targets) # 反向传播 optimizer.zero_grad() loss.backward() # 梯度裁剪 torch_utils.clip_grad_norm_(model.parameters(), clip_value) # 更新参数 optimizer.step() ``` 在上述示例代码中,``clip_value``是裁剪阈值,可以根据实际情况进行调整。使用PyTorch梯度裁剪可以提高模型的训练效果和稳定性。 ### 回答2: 梯度裁剪是一种常用的优化技术,用于解决深度学习模型训练过程中的梯度爆炸和梯度消失问题。PyTorch提供了一种简单的方法来执行梯度裁剪。 在PyTorch中,可以使用`torch.nn.utils.clip_grad_norm_(parameters, max_norm)`函数来实现梯度裁剪。这个函数接受两个参数,`parameters`表示需要进行梯度裁剪的参数列表,`max_norm`表示梯度的最大范数,超过该范数的梯度将被裁剪裁剪后的梯度将被按比例重新缩放,以保持梯度的方向和相对大小。 例如,假设我们有一个模型`model`,并且定义了一个优化器`optimizer`来更新模型的参数。在每次反向传播之前,我们可以使用梯度裁剪来限制参数的梯度大小: ``` optimizer.zero_grad() # 清空梯度 loss.backward() # 反向传播计算梯度 torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm) # 对参数梯度进行裁剪 optimizer.step() # 优化器更新参数 ``` 这样,如果任意参数梯度的范数超过`max_norm`,则会按比例缩小梯度,使其不超过该范数。 梯度裁剪可以有效地防止梯度爆炸,使训练过程更加稳定和可靠。然而,值得注意的是,梯度裁剪并不能解决梯度消失的问题,对于梯度消失,需要采取其他方法,如初始化参数的策略、使用激活函数等。 总之,PyTorch提供了方便的梯度裁剪功能,通过控制梯度大小可以有效解决梯度爆炸问题,提升深度学习模型的稳定性和训练效果。 ### 回答3: PyTorch梯度裁剪是一种用于控制梯度值大小的技术。有时候在训练神经网络的过程中,梯度值可能出现非常大的情况,这可能导致训练过程不稳定,甚至发散。为了解决这个问题,我们可以使用梯度裁剪来限制梯度的范围。 梯度裁剪的思想是设定一个阈值上下限,当梯度的范围超过这个阈值时,将其裁剪到指定范围内。这可以通过PyTorch中的`torch.nn.utils.clip_grad_norm_()`方法来实现。该方法接受两个参数,第一个参数是需要裁剪梯度的参数列表,第二个参数是设定的最大范数。 具体而言,我们可以先计算所有参数的梯度范数。然后,如果范数超过了设定的最大范数,就将梯度进行重新缩放,以使其范数等于最大范数。这样可以确保梯度的范围不会过大。 例如,假设我们有一个参数列表`params`,我们可以使用以下代码对其梯度进行裁剪: ```python torch.nn.utils.clip_grad_norm_(params, max_norm) ``` 其中,`max_norm`是我们设定的最大范数。 通过梯度裁剪,我们可以有效地控制梯度的大小,以提高训练的稳定性和收敛性。但是需要注意的是,梯度裁剪可能会改变梯度的方向,这可能会对模型的性能产生一些影响。因此,在使用梯度裁剪时需要谨慎选择裁剪的范围和阈值。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值