opencv 调用findContours异常的问题

如果使用vector<vector<Point> > contours;作为findContours的参数,在运行时会得到

Assertion failed (mtype == type0 || (CV_MAT_CN(mtype) == CV_MAT_CN(type0) && ((1 << type0) & f...

原因是标准库里有std::vectorPoint
和findContours里要用到的vector和Point不是一回事

所以,声明的时候要用

cv::vector和cv::Point

就可以了

当然可以!下面是一个使用Python和OpenCV调用摄像头并进行数字识别的示例代码: ```python import cv2 import numpy as np from keras.models import load_model # 加载数字识别模型 model = load_model('digit_recognition_model.h5') # 设置摄像头 cap = cv2.VideoCapture(0) while True: # 读取摄像头的帧 ret, frame = cap.read() # 将帧转换为灰度图像 gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # 对图像进行二值化理 _, thresholded = cv2.threshold(gray, 100, 255, cv2.THRESH_BINARY_INV) # 查找图像中的轮廓 contours, _ = cv2.findContours(thresholded, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) for contour in contours: # 获取轮廓的边界框 x, y, w, h = cv2.boundingRect(contour) # 提取数字区域 digit_region = thresholded[y:y+h, x:x+w] # 调整数字区域的大小 resized_digit = cv2.resize(digit_region, (28, 28)) # 将图像转换为模型输入所需的格式 input_data = np.reshape(resized_digit, (1, 28, 28, 1)).astype('float32') / 255 # 使用模型进行预测 prediction = model.predict_classes(input_data)[0] # 在图像上绘制识别结果 cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2) cv2.putText(frame, str(prediction), (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 255, 0), 2) # 显示结果图像 cv2.imshow('Digit Recognition', frame) # 按下 'q' 键退出循环 if cv2.waitKey(1) & 0xFF == ord('q'): break # 释放摄像头并关闭窗口 cap.release() cv2.destroyAllWindows() ``` 在运行代码之前,你需要确保已经安装了OpenCV和Keras库,并且已经训练了一个数字识别模型(保存为'digit_recognition_model.h5')。这个模型可以使用MNIST数据集或者其他适用于数字识别的数据集进行训练。 这段代码会打开计算机的摄像头,实时读取摄像头的帧,并对每一帧进行数字识别。识别结果会在图像上用矩形框和数字进行标注。按下 'q' 键可以退出程序。 希望对你有所帮助!如果还有其他问题,请随时提问。
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值