以股票数据为例使用神经网络预测时间序列数据

以股票数据为例使用神经网络预测时间序列数据

flyfish

源代码地址
整个框架分为以下几个模块dataset,model,config,trainner,evaluator,utils等
数据预处理
将数据按照时间排序

    datetime  code     open    close  ...      low     vol        amount  p_change
0 2010-01-05   300  3545.19  3564.04  ...  3497.66  858096  1.283020e+11      0.81
1 2010-01-06   300  3558.70  3541.73  ...  3541.17  784731  1.210460e+11     -0.63
2 2010-01-07   300  3543.16  3471.46  ...  3452.77  803500  1.204360e+11     -1.98
       datetime  code      open  ...      vol        amount  p_change
2292 2019-06-13   300  3689.580  ...   963317  1.104600e+11     -0.15
2293 2019-06-14   300  3690.480  ...  1018170  1.165840e+11     -0.83
2294 2019-06-17   300  3654.443  ...   440698  5.797155e+10     -0.22

最后我们只选择2012-10-01和2018-10-31之间的数据,也可以选择其他时间段

模型包括LSTM 和 Bidirectional LSTM

预测结果如下,只预测了high最高价
在这里插入图片描述

如果您想加入自己的模型需要在model文件夹中增加您自己的神经网络

运行方法
训练

python main.py -p "train" -m 2

预测

python main.py -p "predict" -m 2

参数说明
-m 表示

1:LSTM
2:BidirectionalLSTM

训练过程如果要启动可视化
命令行运行 python -m visdom.server
在浏览器输入 http://localhost:8097

©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页