目标检测 YOLOv5根据配置改变网络的深度和宽度

目标检测 YOLOv5根据配置改变网络的深度和宽度

flyfish

深度可以理解为网络的层数
宽度可以理解为网络层输出通道的大小

以配置文件 yolov5s.yaml 为例

# parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.50  # layer channel multiple

# YOLOv5 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Focus, [64, 3]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, BottleneckCSP, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 9, BottleneckCSP, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, BottleneckCSP, [512]],
   [-1, 1, Conv, [1024, 3, 2]], # 7-P5/32
   [-1, 1, SPP, [1024, [5, 9, 13]]],
  ]

这是两个缩放系数
depth_multiple 网络深度
width_multiple 网络宽度

计算过程在yolo.py中

def parse_model(d, ch):  # model_dict, input_channels(3)
    logger.info('\n%3s%18s%3s%10s  %-40s%-30s' % ('', 'from', 'n', 'params', 'module', 'arguments'))
    anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']

depth_multiple赋值给gd
width_multiple赋值给gw

网络深度(网络层数)

n = max(round(n * gd), 1) if n > 1 else n  # depth gain

depth_multiple 起作用的部分 ,红色标出gd
在这里插入图片描述

网络宽度(网络输出通道)

c2 = make_divisible(c2 * gw, 8)

width_multiple起作用的部分,红色标出gw
在这里插入图片描述
这个函数也曾在mobilenet中出现过
关于为什么需要能够被8整除这里有一段描述原因
《Universally Slimmable Networks and Improved Training Techniques》
泛化可精简网络及其改进的训练技术

这里面这样说

 In practice, with d = 8 the US-Nets already provide enough adjustable widths. 
 Also in many hardware systems,matrix multiplication with size dividable by d = 8, 16, ..., 
 may be as fast as a smaller size due to alignment of processing unit (e.g., warp size in GPU is 32).

在实践中,当d=8时,US-Nets已经提供了足够的可调宽度。此外,在许多硬件系统中,由于处理单元的对齐,大小可被d=8、16…整除的矩阵乘法可以与较小的大小一样快。

Conv2d(8, 16, kernel_size=(3, 3), stride=(2, 2)在图中的表示
在这里插入图片描述

(1): Conv(
  (conv): Conv2d(8, 16, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
  (bn): BatchNorm2d(16, eps=0.001, momentum=0.03, affine=True, track_running_stats=True)
  (act): SiLU()

from: 输入来自哪一层 , -1代表上一层
n: 层数
params: 参数量
module :模块名称
arguments:层参数

depth_multiple和width_multiple不同的配置,造成了模型的大小不同
Yolov5s.yaml
Yolov5m.yaml
Yolov5l.yaml
Yolov5x.yaml

<think>好的,我现在需要处理用户关于YOLO配置文件(cfg)用法下载的问题。首先,用户提到了YOLOv8的示例配置,比如model=cfg/models/v8/yolov8_OREPA.yaml,所以应该从YOLO官方资源入手。 用户可能需要知道如何获取这些配置文件,以及如何使用它们进行训练或检测。YOLO配置文件通常定义模型结构,比如层数、卷积参数等。我需要确认不同版本的YOLO(如v5、v7、v8)的配置文件位置是否不同,并指出官方仓库的地址。 然后,关于用法,用户可能想知道在训练命令中如何指定这些cfg文件,例如在Ultralytics的YOLOv8中,使用model=yolov8n.yaml这样的参数。需要详细说明配置文件的用途,比如修改模型结构或超参数。 下载方面,用户可能需要指导如何从GitHub仓库获取这些文件,或者通过CLI工具下载预训练模型时自动获取配置。例如,yolo task=detect mode=train model=yolov8n.yaml ... 这里的model参数指向配置文件,如果本地没有,可能会自动下载? 还要考虑用户可能遇到的常见问题,比如配置文件路径错误,或者如何自定义模型结构。需要提醒用户修改配置文件后保存,并在训练时正确引用路径。 另外,用户提供的引用中有提到EfficientDet的代码库,但用户的问题集中在YOLO,所以主要关注YOLO相关的资源。可能需要对比不同版本的YOLO配置差异,比如v5v8的结构变化。 最后,生成相关问题,帮助用户深入理解,比如如何修改配置文件、不同配置的影响,以及配置文件与预训练模型的关系等。</think>以下是与YOLO配置文件(cfg)相关的使用指南资源路径: ### 一、YOLO配置文件获取途径 1. **官方GitHub仓库** - YOLOv5:https://github.com/ultralytics/yolov5/tree/master/models - YOLOv8:https://github.com/ultralytics/ultralytics/tree/main/ultralytics/models/v8 - 包含标准模型配置文件如:`yolov8n.yaml`、`yolov8s.yaml`等[^1] 2. **自定义配置生成** 通过CLI命令自动下载: ```bash yolo cfg=models/yolov8n.yaml # 会从云端仓库拉取配置文件 ``` ### 二、配置文件核心结构(以YOLOv8为例) ```yaml # yolov8n.yaml nc: 80 # 类别数 scales: # 模型缩放系数 depth: 0.33 # 网络深度 width: 0.25 # 通道宽度 backbone: - [-1, 1, Conv, [64, 3, 2]] # 输入通道数,卷积核数,核大小,步长 - [-1, 1, C2f, [128, True]] head: - [-1, 1, Detect, [nc]] # 检测头配置 ``` ### 三、配置文件使用场景 1. **模型训练**(示例命令): ```bash yolo task=detect mode=train model=cfg/yolov8_custom.yaml data=coco128.yaml epochs=100 imgsz=640 ``` 其中`model`参数直接指向配置文件路径[^1] 2. **架构修改** - 调整卷积层通道数 - 修改检测头结构 - 添加注意力模块 ### 四、最佳实践建议 1. 修改配置文件后建议新建副本保存 2. 模型缩放建议遵循官方比例系数(depth/width) 3. 数据集配置文件(如`coco128.yaml`)需与模型配置文件配合使用
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

二分掌柜的

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值