目标检测 YOLOv5 - 模型的输出

本文详细解析了YOLOv5模型在处理640×640像素图像时的输出结构。模型输出包含三个尺度,对应于不同大小的网格,每个网格预测3个边界框,总共有80个类别。输出尺寸分别为80×80、40×40和20×20,对应于步长为8、16和32的检测层。每个单元格预测B=3个框,每个框包含C=80类的概率和坐标信息。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目标检测 YOLOv5 - 模型的输出

flyfish

版本: YOLOv5:v5

模型的输出

 y = model(img) 

y就是输出,y的样子如下

torch.Size([1, 3, 80, 80, 85])
torch.Size([1, 3, 40, 40, 85])
torch.Size([1, 3, 20, 20, 85])

在这里插入图片描述
在这里插入图片描述
按照stride来划分,以640 × 640像素图像为例
stride分别是8,16,32

640 /  8 = 80,这层网格大小是80 × 80
640 / 16 = 40,这层网格大小是40 × 40
640 / 32 = 20,这层网格大小是20 × 20

B是每个单元格的预测框的数量
C是类别的数量
这里通常是B=3,C=80(COCO dataset)
输出有3块,分别是output,405,419

output

在这里插入图片描述

405

在这里插入图片描述

419

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

二分掌柜的

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值