2021 最新人体姿态估计综述!参考文献近百篇

点击下方“AI算法与图像处理”,一起进步!

重磅干货,第一时间送达

f1f4f15b0c4e19149fa215b687433960.png

今天分享一篇2021最新的人体姿态估计综述,这里仅做简单的内容介绍,详细的细节请参考原文,如果对你有所帮助,欢迎分享给你的小伙伴!

标题:Single Person Pose Estimation: A Survey

论文:https://arxiv.org/pdf/2109.10056.pdf

ICCV2021 论文整理:https://github.com/DWCTOD/ICCV2021-Papers-with-Code-Demo

1、摘要

无约束图像和视频中的人体姿态估计是计算机视觉的一项基本任务。为了说明技术上的发展路径,在本次调查中,我们在结构化分类法中介绍了人类姿态方法,特别关注深度学习模型和单人图像设置。具体而言,我们检查和调查了典型人体姿态估计管道的所有组件,包括数据增强、模型架构和主干网络、监督表征、后处理、标准数据集、评估指标。为了展望未来的发展方向,我们最后讨论了人体姿态估计中尚未解决的关键问题和潜在的发展趋势。

深度学习人体姿态估计pipeline:

722d51307f785bc1ca7ded56efd0cf1b.png

模型组件视角下的人体姿态估计分类:

4c9256c6d60dee471979d02fd43cb322.png

2、数据增强

2.1 Random Data Augmentation
  • Flipping

  • Rotation

  • Scaling

  • Color jittering

  • Occlusion

  • Pose-specific augmentations

2.2 Optimized Data Augmentation

Two representative types of learning framework in the literature are adversarial learning and neural architecture search.

文献中两种有代表性的学习框架是对抗式学习和神经结构搜索

3、Model Architecture and Network Design

3.1 Model Architecture
  • Sequential architecture

  • Cascaded architecture

  • Recurrent architecture

  • Adversarial architecture

3.2 Network Design
  • Multi-scale feature learning

  • Prior knowledge incorporation

  • Spatial relation modelling

  • Attention mechanism

4、Post-processing

df2a3f5e869b4566bebcd9752249038d.png

4cbdd422d90a01ecceb6c37e3e270972.png

5、Supervision Representatio

人体姿态估计的方法可分为基于坐标的和基于热力图的方法

6、Human Pose Dataset

数据集示例:

0e8db90c8b13c096bd4258112548b601.png

数据集概述:

10ca7df6cd9fb227d134da2f59fe1e49.png

7、Performance Evaluation Metrics

  • Percentage of Correct Parts (PCP).
  • Percent of Detected Joints (PDJ)

  • Percentage of Correct Keypoints (PCK)

  • Other Metrics.

努力分享优质的计算机视觉相关内容,欢迎关注:

交流群

欢迎加入公众号读者群一起和同行交流,目前有美颜、三维视觉、计算摄影、检测、分割、识别、医学影像、GAN、算法竞赛等微信群

 
 
 
 
 
 
 
 
 
 
个人微信(如果没有备注不拉群!)
请注明:地区+学校/企业+研究方向+昵称

下载1:何恺明顶会分享

在「AI算法与图像处理」公众号后台回复:何恺明,即可下载。总共有6份PDF,涉及 ResNet、Mask RCNN等经典工作的总结分析

下载2:终身受益的编程指南:Google编程风格指南

在「AI算法与图像处理」公众号后台回复:c++,即可下载。历经十年考验,最权威的编程规范!

下载3 CVPR2021


在「AI算法与图像处理」公众号后台回复:CVPR,即可下载1467篇CVPR 2020论文 和 CVPR 2021 最新论文

3562d791e9fb4a8db6d87a4eb616c6bd.gif

6D姿态估计是指对物体在三维空间中的姿态进行准确预测和估计的技术。在计算机视觉和图像处理领域,6D姿态估计是一个重要的研究方向,对于目标识别、物体跟踪、机器人控制等应用具有重要意义。 现有的文献研究表明,6D姿态估计可以通过不同的方法来实现。其中一种主要的方法是基于模型的姿态估计。该方法通过建立准确的三维模型来匹配二维图像中物体的特征点,从而获得物体的姿态信息。这种方法能够得到较为准确的姿态估计结果,但受到模型建立的复杂性和计算量的限制。 另一种常用的方法是基于深度学习的姿态估计深度学习通过训练神经网络来学习物体的姿态特征,从而能够更准确地估计物体的姿态。这种方法具有较好的鲁棒性和实时性,但对于训练数据的依赖较大。 此外,还有一些其他的方法用于6D姿态估计,如基于传感器的姿态估计和基于优化的姿态估计等。这些方法分别借助于传感器数据和优化算法估计物体的姿态,具有一定的应用场景和优势。 综上所述,6D姿态估计是一个重要的研究领域,在计算机视觉和图像处理中具有广泛的应用前景。目前已有多种方法用于实现6D姿态估计,各自具有一定的优势和适用场景。未来的研究可以进一步探索新的算法和技术,提高姿态估计的准确性和实时性,以满足不同应用领域的需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值