为了编写一个完整的、贴近实际应用场景的 OQPSK 调制解调仿真程序,我们需要考虑许多因素,包括但不限于:Gardner 定时恢复算法、Costas 环路进行载波同步以及处理相位模糊等问题。此外,还需保证代码不会出现诸如数组越界之类的错误,并确保仿真的 BER 性能能够接近理论值。
以下是基于 MATLAB 平台的一个较为全面的 OQPSK Modem 设计实例:
```matlab
clear all;
close all;
% 参数设置
M = 2; % QPSK星座点数为2^m,这里选择基础情况下的2
Fs = 8e6; % 采样率(Hz)
Rs = Fs / 4; % 符号速率 Rs (baud)
EbNoVecdB = [-5:0.5:10]; % Eb/N0范围(dB)
numFrames = 100; % 数据帧数目
frameLenBits = 1000*M; % 每一帧中的信息比特长度
dataTxAll = randi([0 M-1], numFrames * frameLenBits, 1);
% 初始化存储BER结果向量
berSimulated = zeros(size(EbNoVecdB));
for idxEbNo = 1:length(EbNoVecdB)
berThisSNR = nan(numFrames, 1);
for nFrame = 1:numFrames
dataIn = dataTxAll((nFrame - 1) * frameLenBits + (1:frameLenBits));
%% 发送端
qamModulator = comm.RectangularQAMModulator(M,'BitInput',true,...
'SymbolMapping','Custom',...
'CustomSymbols',[1+j,-1-j]);
oqpskModSignal = oqpskModulate(dataIn, qamModulator);
% AWGN信道添加噪声
snrLinear = 10^(EBNoVecDb(idxEbNo)/10);
noisePower = sum(abs(oqpskModSignal).^2)/(length(oqpskModSignal)*snrLinear);
awgnChannelOutput = wgn(1,length(oqpskModSignal),db(noisePower),'complex')+oqpskModSignal;
%% 接收端
% 使用 Gardner 法进行符号定时估计与校正
[estSymRate,symbolTimes] = gardnerTimingRecovery(awgnChannelOutput,Rs,Fs);
% Costas环路完成载波恢复并解决相位模糊的问题
costasLoopObj = comm.CostasLoop('SamplesPerSymbol', estSymRate/Rs, ...
'DampingFactor', 1, ...
'NaturalFrequency', .7*pi*Rs/Fs);
recoveredBasebandSig = step(costasLoopObj, awgnChannelOutput(symbolTimes));
demodDataRx = demodulate(qamModulator,recoveredBasebandSig);
[~, bitErrors] = biterr(double(dataIn)',demodDataRx');
berThisSNR(nFrame) = bitErrors/frameLenBits;
end
berSimulated(idxEbNo) = mean(berThisSNR(isfinite(berThisSNR)));
end
semilogy(EbNoVecdB,berSimulated,'-*'); hold on;
xlabel('E_b/N_0 Ratio (dB)');
ylabel('BER');
legend('Simulation Results');
%% 子函数定义区域 %%
function outSig=oqpskModulate(inData,qamMod)
I_data=inData(1:2:end);
Q_data=inData(2:2:end);
% 进行差分编码以避免绝对相位参考问题导致的相位模糊现象
diffEncode=@(x)cumsum(mod(x(:)+[0;x(end:-1:2)],2));
encodedIData=diffEncode(I_data)';
encodedQData=diffEncode(Q_data)';
inPhase=qamMod(encodedIData);
quadPhase=qamMod(encodedQData);
outSig=[inPhase.';quadPhase.'].';
end
function [sym_rate,time_idx]=gardnerTimingRecovery(rx_sig,f_sym,T_samp)
delay=round(T_samp/f_sym/2)-1; %#ok<PER>
len=length(rx_sig)-delay;
early=(real(rx_sig(delay+2:len)).*imag(rx_sig(1:len-delay))).';
late =(real(rx_sig(1:len-delay)).*imag(rx_sig(delay+2:len))).';
timingErrDiff=sum(late-early)./len;
sym_rate=f_sym-timingErrDiff*f_sym;
time_idx=round(((0:len)'-.5).*T_samp./f_sym)+floor(.5*T_samp./sym_rate)+1;
end
```
这段脚本涵盖了整个通信链路上的主要部分——从原始消息数据的产生到最后接收到的消息数据之间的比较计算误码率。同时针对可能影响性能的关键环节采取了措施加以优化和完善,例如利用了Gardner定时同步方法来进行符号时间误差检测及补偿;采用Costas环路实现相干解调解的同时解决了由非理想条件下产生的相位模棱两可的情况等。