【数学】高昆轮高数下强化

常微分方程

基本概念

微分方程

含 有 自 变 量 , 未 知 函 数 及 未 知 函 数 的 导 数 的 方 程 称 为 微 分 方 程 未 知 函 数 是 一 元 函 数 的 的 微 分 方 程 称 为 常 微 分 方 程 一 般 形 式 为 F ( x , y , y ′ , ⋯   , y ( n ) ) = 0 , 标 准 形 式 为 y ( n ) = f ( x , y , y ′ , ⋯   , y ( n − 1 ) ) \begin{aligned} &含有自变量,未知函数及未知函数的导数的方程称为微分方程\\ &未知函数是一元函数的的微分方程称为常微分方程\\ &一般形式为F(x,y,y',\cdots,y^{(n)})=0,标准形式为y^{(n)}=f(x,y,y',\cdots,y^{(n-1)})\\ \end{aligned} F(x,y,y,,y(n))=0,y(n)=f(x,y,y,,y(n1))

微分方程的阶

微分方程中未知函数的导数的最高阶数称为微分方程的阶

微分方程的解

若 y = y ( x ) 能 使 F ( x , y , y ′ , ⋯   , y ( n ) ) ≡ 0 或 y ( n ) ≡ f ( x , y , y ′ , ⋯   , y ( n − 1 ) ) , 称 y = y ( x ) 是 微 分 方 程 的 解 \begin{aligned} &若y=y(x)能使F(x,y,y',\cdots,y^{(n)})\equiv 0或y^{(n)}\equiv f(x,y,y',\cdots,y^{(n-1)}),称y=y(x)是微分方程的解 \end{aligned} y=y(x)使F(x,y,y,,y(n))0y(n)f(x,y,y,,y(n1)),y=y(x)

微分方程的通解与特解

若微分方程的解中含有独立常数的个数等于微分方程的阶数,称该解为通解;

不含任意常数的解称为特解

初始条件

确定通解中所有常数的条件称为初始条件

[ 例 1 ] 以 y = C 1 cos ⁡ x + C 2 e − x ( 其 中 C 1 , C 2 是 任 意 常 数 ) 为 通 解 的 微 分 方 程 是 ‾ y = C 1 cos ⁡ x + C 2 e − x    ⟹    y ′ = − C 1 sin ⁡ x − C 2 e − x    ⟹    y ′ ′ = − C 1 cos ⁡ x + C 2 e − x 由 后 两 者 知 C 1 = − y ′ ′ + y ′ sin ⁡ x + cos ⁡ x , C 2 = − − y ′ ′ sin ⁡ x + y ′ cos ⁡ x ( sin ⁡ x + cos ⁡ x ) e − x 代 入 得 : y = − ( y ′ ′ + y ′ ) cos ⁡ x sin ⁡ x + cos ⁡ x + ( y ′ ′ + y ′ ) sin ⁡ x sin ⁡ x + cos ⁡ x − y ′ 即 ( sin ⁡ x − cos ⁡ x ) y ′ ′ − ( 2 cos ⁡ x ) y ′ − ( sin ⁡ x + cos ⁡ x ) y = 0 \begin{aligned} [例1]&\color{maroon}以y=C_1\cos x+C_2e^{-x}(其中C_1,C_2是任意常数)为通解的微分方程是\underline{\quad}\\ &y=C_1\cos x+C_2e^{-x}\implies y'=-C_1\sin x-C_2e^{-x}\implies y''=-C_1\cos x+C_2e^{-x}\\ &由后两者知C_1=-\frac{y''+y'}{\sin x+\cos x},C_2=-\frac{-y''\sin x+y'\cos x}{(\sin x+\cos x)e^{-x}}\\ &代入得:y=-\frac{(y''+y')\cos x}{\sin x+\cos x}+\frac{(y''+y')\sin x}{\sin x+\cos x}-y'\\ &即(\sin x-\cos x)y''-(2\cos x)y'-(\sin x+\cos x)y=0\\ \end{aligned} [1]y=C1cosx+C2ex(C1,C2)y=C1cosx+C2exy=C1sinxC2exy=C1cosx+C2exC1=sinx+cosxy+y,C2=(sinx+cosx)exysinx+ycosxy=sinx+cosx(y+y)cosx+sinx+cosx(y+y)sinxy(sinxcosx)y(2cosx)y(sinx+cosx)y=0

一阶方程求解

变量可分离方程

能 表 示 为 g ( y ) d y = f ( x ) d x 的 方 程 称 为 变 量 可 分 离 方 程 解 法 : 两 端 直 接 作 积 分 ∫ g ( y ) d y = ∫ f ( x ) d x \begin{aligned} &能表示为g(y)dy=f(x)dx的方程称为变量可分离方程\\ &解法:两端直接作积分\int g(y)dy=\int f(x)dx \end{aligned} g(y)dy=f(x)dxg(y)dy=f(x)dx

齐次方程

能 表 示 为 d y d x = φ ( y x ) 的 方 程 称 为 齐 次 方 程 解 法 : 令 u = y x , 则 y = u x , d y d x = u + x d u d x , 代 入 原 方 程 , 得 u + x d u d x = φ ( u ) 即 d u φ ( u ) − u = d x x , 化 为 了 变 量 可 分 离 方 程 \begin{aligned} &能表示为\frac{dy}{dx}=\varphi(\frac yx)的方程称为齐次方程\\ &解法:令u=\frac yx,则y=ux,\frac{dy}{dx}=u+x\frac{du}{dx},代入原方程,得u+x\frac{du}{dx}=\varphi(u)\\ &即\frac{du}{\varphi(u)-u}=\frac{dx}x,化为了变量可分离方程\\ \end{aligned} dxdy=φ(xy)u=xy,y=ux,dxdy=u+xdxdu,u+xdxdu=φ(u)φ(u)udu=xdx,

一阶线性方程

能 表 示 为 y ′ + P ( x ) y = Q ( x ) 的 方 程 称 为 一 阶 线 性 方 程 解 法 : 套 公 式 y = e − ∫ P ( x ) d x ( ∫ e ∫ P ( x ) d x ⋅ Q ( x ) d x + C ) \begin{aligned} &能表示为y'+P(x)y=Q(x)的方程称为一阶线性方程\\ &解法:套公式y=e^{-\int P(x)dx}(\int e^{\int P(x)dx}\cdot Q(x)dx+C) \end{aligned} y+P(x)y=Q(x)线y=eP(x)dx(eP(x)dxQ(x)dx+C)

伯努利方程

能 表 示 为 y ′ + P ( x ) y = Q ( x ) y α ( α ̸ = 0 , 1 ) 的 方 程 称 为 伯 努 利 方 程 解 法 : 令 u = y 1 − α , 可 化 为 一 阶 线 性 方 程 \begin{aligned} &能表示为y'+P(x)y=Q(x)y^\alpha(\alpha\not=0,1)的方程称为伯努利方程\\ &解法:令u=y^{1-\alpha},可化为一阶线性方程\\ \end{aligned} y+P(x)y=Q(x)yα(α̸=0,1)u=y1α,线

  [ 例 1 ] 微 分 方 程 y ′ = y ( 1 − x ) x 的 通 解 为 ‾ d y d x = y ( 1 − x ) x    ⟹    ∫ d y y = ∫ ( 1 x − 1 ) d x 故 ln ⁡ ∣ y ∣ = ln ⁡ ∣ x ∣ − x + C , 即 ∣ y ∣ = ∣ x ∣ ⋅ e − x ⋅ e C = C x e − x ( ∀ c ̸ = 0 ) [ 例 2 ] 求 微 分 方 程 ( y + x 2 + y 2 ) d x − x d y = 0 满 足 y ( 1 ) = 0 ( x > 0 ) 的 解 d y d x = y + x 2 + y 2 x = y x + 1 + ( y x ) 2 令 y x = u , 则 y = u x , 故 d y d x = x d u d x + u    ⟹    x d u d x + u = u + 1 + u 2 , 即 ∫ d u 1 + u 2 = ∫ d x x 故 ln ⁡ ( u + 1 + u 2 ) = ln ⁡ x + ln ⁡ c = ln ⁡ c x    ⟹    y x + 1 + ( y x ) 2 = c x 且 y ( 1 ) = 0 故 y x + 1 + y 2 x 2 = x [ 例 3 ] 微 分 方 程 y ′ + y = e − x cos ⁡ x 满 足 y ( 0 ) = 0 的 解 为 ‾ y = e − ∫ 1 d x ⋅ ( ∫ e − x cos ⁡ x ⋅ e ∫ 1 d x d x + C ) = e − x ⋅ ( sin ⁡ x + C ) 且 y ( 0 ) = 0    ⟹    y = e − x sin ⁡ x [ 例 4 ] 微 分 方 程 y ′ = 1 x y + y 3 的 通 解 为 ‾ x    ⟺    y { y = y ( x ) x = x ( y ) 由 d y d x = 1 x y + y 3 , 知 d x d y = y x + y 3    ⟹    x ′ − y x = y 3 , 故 x = e − ∫ − y d y ⋅ ( ∫ y 3 ⋅ e ∫ − y d y d y + C ) = e 1 2 y 2 ( ∫ y 3 ⋅ e − 1 2 y 2 d y + C ) = − ( y 2 − 2 ) + C e 1 2 y 2 [ 例 5 ] 设 连 续 函 数 f ( x ) 满 足 ∫ 0 x f ( t ) d t + ∫ 0 x t f ( x − t ) d t = a x 2 ( 1 ) 求 f ( x ) ; ( 2 ) 若 f ( x ) 在 [ 0 , 1 ] 上 的 平 均 值 为 1 , 求 a 的 值 ( 1 ) ∫ 0 x t f ( x − t ) d t = ∫ x 0 ( x − u ) f ( u ) ( − d u ) = i n t 0 x ( x − u ) ∫ f ( u ) d u = x ∫ 0 x f ( u ) d u − ∫ 0 x u f ( u ) d u    ⟹    ∫ 0 x f ( t ) d t + x ∫ 0 x f ( u ) d u − ∫ 0 x u f ( u ) d u = a x 2    ⟹    f ( x ) + ∫ 0 x f ( u ) d u + x f ( x ) − x f ( x ) = 2 a x    ⟹    f ′ ( x ) + f ( x ) = 2 a 故 f ( x ) = e − x ⋅ ( 2 a e x + C ) 且 f ( 0 ) = 0    ⟹    f ( x ) = 2 a − 2 a e − x = 2 a ( 1 − e − x ( 2 ) ∫ 0 1 f ( x ) d x = ∫ 0 1 2 a ( 1 − e − x ) d x = 2 a e − 1    ⟹    ∫ 0 1 f ( x ) d x 1 − 0 = 2 a ⋅ e − 1 = 1 , 故 a = e 2 [ 例 6 ] 设 F ( x ) = f ( x ) g ( x ) , 其 中 f ( x ) , g ( x ) 在 ( − ∞ , + ∞ ) 内 满 足 条 件 : f ′ ( x ) = g ( x ) , g ′ ( x ) = f ( x ) , 且 f ( 0 ) = 0 , f ( x ) + g ( x ) = 2 e x . ( 1 ) 求 F ( x ) 所 满 足 的 一 阶 微 分 方 程 ; ( 2 ) 求 F ( x ) 的 表 达 式 ( 1 ) F ′ ( x ) = f ′ ( x ) g ( x ) + f ( x ) g ′ ( x ) = g 2 ( x ) + f 2 ( x ) = ( g ( x ) + f ( x ) ) 2 − 2 g ( x ) f ( x ) = 4 e 2 x − 2 F ( x ) , 故 F ′ ( x ) = 2 F ( x ) = 4 e 2 x ( 2 ) F ( x ) = e − 2 x ⋅ ( ∫ 4 e 2 x ⋅ e 2 x d x + C ) = e − 2 x ( e 4 x + C ) , 且 F ( 0 ) = 0 故 C = − 1 , 故 F ( x ) = e 2 x − e − 2 x \begin{aligned} \ [例1]&\color{maroon}微分方程y'=\frac{y(1-x)}{x}的通解为\underline{\quad}\\ &\frac{dy}{dx}=\frac{y(1-x)}x\implies \int \frac{dy}y=\int(\frac1x-1)dx\\ &故\ln\mid y\mid=\ln\mid x\mid-x+C,即\mid y\mid=\mid x\mid\cdot e^{-x}\cdot e^C=Cxe^{-x}(\forall c\not=0)\\ [例2]&\color{maroon}求微分方程(y+\sqrt{x^2+y^2})dx-xdy=0满足y(1)=0(x>0)的解\\ &\frac{dy}{dx}=\frac{y+\sqrt{x^2+y^2}}{x}=\frac yx+\sqrt{1+(\frac yx)^2}\\ &令\frac yx=u,则y=ux,故\frac{dy}{dx}=x\frac{du}{dx}+u\\ &\implies x\frac{du}{dx}+u=u+\sqrt{1+u^2},即\int\frac{du}{\sqrt{1+u^2}}=\int\frac{dx}x\\ &故\ln(u+\sqrt{1+u^2})=\ln x+\ln c=\ln cx\implies \frac yx+\sqrt{1+(\frac yx)^2}=cx且y(1)=0\\ &故\frac yx+\sqrt{1+\frac{y^2}{x^2}}=x\\ [例3]&\color{maroon}微分方程y'+y=e^{-x}\cos x满足y(0)=0的解为\underline{\quad}\\ &y=e^{-\int1dx}\cdot(\int e^{-x}\cos x\cdot e^{\int1dx}dx+C)=e^{-x}\cdot (\sin x+C)且y(0)=0\\ &\implies y=e^{-x}\sin x\\ [例4]&\color{maroon}微分方程y'=\frac1{xy+y^3}的通解为\underline{\quad}\\ &x\iff y\begin{cases}y=y(x)\\x=x(y)\end{cases}\\ &由\frac{dy}{dx}=\frac1{xy+y^3},知\frac{dx}{dy}=yx+y^3\\ &\implies x'-yx=y^3,故x=e^{-\int-ydy}\cdot(\int y^3\cdot e^{\int-ydy}dy+C)\\ &=e^{\frac12y^2}(\int y^3\cdot e^{-\frac12y^2}dy+C)=-(y^2-2)+Ce^{\frac12y^2}\\ [例5]&\color{maroon}设连续函数f(x)满足\int_0^xf(t)dt+\int_0^xtf(x-t)dt=ax^2\\ &\color{maroon}(1)求f(x);(2)若f(x)在[0,1]上的平均值为1,求a的值\\ (1)&\int_0^xtf(x-t)dt=\int_x^0(x-u)f(u)(-du)=int_0^x(x-u)\int f(u)du=x\int_0^xf(u)du-\int_0^xuf(u)du\\ &\implies \int_0^xf(t)dt+x\int_0^xf(u)du-\int_0^xuf(u)du=ax^2\\ &\implies f(x)+\int_0^xf(u)du+xf(x)-xf(x)=2ax\implies f'(x)+f(x)=2a\\ &故f(x)=e^{-x}\cdot(2ae^x+C)且f(0)=0\implies f(x)=2a-2ae^{-x}=2a(1-e^{-x}\\ (2)&\int_0^1f(x)dx=\int_0^12a(1-e^{-x})dx=2ae^{-1}\\ &\implies \frac{\int_0^1f(x)dx}{1-0}=2a\cdot e^{-1}=1,故a=\frac e2\\ [例6]&\color{maroon}设F(x)=f(x)g(x),其中f(x),g(x)在(-\infty,+\infty)内满足条件:f'(x)=g(x),g'(x)=f(x),\\ &\color{maroon}且f(0)=0,f(x)+g(x)=2e^x.\quad (1)求F(x)所满足的一阶微分方程;(2)求F(x)的表达式\\ (1)&F'(x)=f'(x)g(x)+f(x)g'(x)=g^2(x)+f^2(x)=(g(x)+f(x))^2-2g(x)f(x)\\ &=4e^{2x}-2F(x),故F'(x)=2F(x)=4e^{2x}\\ (2)&F(x)=e^{-2x}\cdot(\int 4e^{2x}\cdot e^{2x}dx+C)=e^{-2x}(e^{4x}+C),且F(0)=0\\ &故C=-1,故F(x)=e^{2x}-e^{-2x} \end{aligned}  [1][2][3][4][5](1)(2)[6](1)(2)y=xy(1x)dxdy=xy(1x)ydy=(x11)dxlny=lnxx+C,y=xexeC=Cxex(c̸=0)(y+x2+y2 )dxxdy=0y(1)=0(x>0)dxdy=xy+x2+y2 =xy+1+(xy)2 xy=u,y=ux,dxdy=xdxdu+uxdxdu+u=u+1+u2 ,1+u2 du=xdxln(u+1+u2 )=lnx+lnc=lncxxy+1+(xy)2 =cxy(1)=0xy+1+x2y2 =xy+y=excosxy(0)=0y=e1dx(excosxe1dxdx+C)=ex(sinx+C)y(0)=0y=exsinxy=xy+y31xy{y=y(x)x=x(y)dxdy=xy+y31,dydx=yx+y3xyx=y3,x=eydy(y3eydydy+C)=e21y2(y3e21y2dy+C)=(y22)+Ce21y2f(x)0xf(t)dt+0xtf(xt)dt=ax2(1)f(x);(2)f(x)[0,1]1a0xtf(xt)dt=x0(xu)f(u)(du)=int0x(xu)f(u)du=x0xf(u)du0xuf(u)du0xf(t)dt+x0xf(u)du0xuf(u)du=ax2f(x)+0xf(u)du+xf(x)xf(x)=2axf(x)+f(x)=2af(x)=ex(2aex+C)f(0)=0f(x)=2a2aex=2a(1ex01f(x)dx=012a(1ex)dx=2ae11001f(x)dx=2ae1=1,a=2eF(x)=f(x)g(x),f(x),g(x)(,+)f(x)=g(x),g(x)=f(x),f(0)=0,f(x)+g(x)=2ex.(1)F(x)(2)F(x)F(x)=f(x)g(x)+f(x)g(x)=g2(x)+f2(x)=(g(x)+f(x))22g(x)f(x)=4e2x2F(x),F(x)=2F(x)=4e2xF(x)=e2x(4e2xe2xdx+C)=e2x(e4x+C),F(0)=0C=1,F(x)=e2xe2x

二阶可降阶方程

1. y ′ ′ = f ( x , y ′ ) 型 ( 缺 y 型 ) 解 法 : 令 y ′ = p , 则 y ′ ′ = p ′ , 代 入 原 方 程 , 化 为 一 阶 方 程 2. y ′ ′ = f ( y , y ′ ) 型 ( 缺 x 型 ) 解 法 : 令 y ′ = p , 则 y ′ ′ = p d p d y , 代 入 原 方 程 , 化 为 一 阶 方 程 [ 例 1 ] 微 分 方 程 y y ′ ′ + y ′ 2 = 0 满 足 y ( 0 ) = 1 , y ′ ( 0 ) = 1 2 的 特 解 是 ‾ 令 y ′ = p , 则 y ′ ′ = p d p d y , 代 入 方 程 , y p d o d y + p 2 = 0 , 即 y d p d y + p = 0    ⟹    ∫ d p p = − ∫ d y y , 故 ln ⁡ p = − ln ⁡ y + ln ⁡ c 1    ⟹    p = c 1 y = d y d x , 由 y ( 0 ) = 1 , y ′ ( 0 ) = 1 2 , 知 c 1 = 1 2 ∫ y d y = ∫ 1 2 d x , 故 1 2 y 2 = 1 2 x + c 2 由 y ( 0 ) = 1 , 知 c 2 = 1 2 , 所 以 y = x + 1 \begin{aligned} 1.& y''=f(x,y')型(缺y型)\\ &解法:令y'=p,则y''=p',代入原方程,化为一阶方程\\ 2.&y''=f(y,y')型(缺x型)\\ &解法:令y'=p,则y''=p\frac{dp}{dy},代入原方程,化为一阶方程\\ [例1]&\color{maroon}微分方程yy''+y'^2=0满足y(0)=1,y'(0)=\frac12的特解是\underline{\quad}\\ &令y'=p,则y''=p\frac{dp}{dy},代入方程,yp\frac{do}{dy}+p^2=0,即y\frac{dp}{dy}+p=0\\ &\implies \int\frac{dp}p=-\int\frac{dy}y,故\ln p=-\ln y+\ln c_1\\ &\implies p=\frac{c_1}y=\frac{dy}{dx},由y(0)=1,y'(0)=\frac12,知c_1=\frac12\\ &\int ydy=\int\frac12dx,故\frac12y^2=\frac12 x+c_2\\ &由y(0)=1,知c_2=\frac12,所以y=\sqrt{x+1}\\ \end{aligned} 1.2.[1]y=f(x,y)(y)y=p,y=p,y=f(y,y)(x)y=p,y=pdydp,yy+y2=0y(0)=1,y(0)=21y=p,y=pdydp,,ypdydo+p2=0,ydydp+p=0pdp=ydy,lnp=lny+lnc1p=yc1=dxdy,y(0)=1,y(0)=21,c1=21ydy=21dx,21y2=21x+c2y(0)=1,c2=21,y=x+1

高阶线性微分方程

线性方程解的结构及性质

以 二 阶 线 性 方 程 为 例 , 对 高 阶 或 一 阶 线 性 方 程 结 论 类 似 y ′ ′ + p ( x ) y ′ + q ( x ) y = f ( x ) ( 一 ) 二 阶 线 性 非 齐 次 微 分 方 程 y ′ ′ + p ( x ) y ′ + q ( x ) y = 0 ( 二 ) 二 阶 线 性 齐 次 微 分 方 程 ( 1 ) 若 y 1 , y 2 是 方 程 ( 二 ) 的 两 个 线 性 无 关 的 解 , 则 C 1 y 1 + C 2 y 2 是 ( 二 ) 的 通 解 ( 2 ) 若 C 1 y 1 + C 2 y 2 是 ( 二 ) 的 通 解 , y ∗ 是 ( 一 ) 的 特 解 , 则 C 1 y 1 + C 2 y 2 + y ∗ 是 ( 一 ) 的 通 解 ( 3 ) 若 ( 一 ) 中 的 非 齐 次 项 f ( x ) = f 1 ( x ) + f 2 ( x ) , 且 y 1 ∗ 是 y ′ ′ + p ( x ) y + q ( x ) y = f 2 ( x ) 的 特 解 , y 2 ∗ 是 y ′ ′ + p ( x ) y ′ + q ( x ) y = f 2 ( x ) 的 特 解 , 则 y 1 ∗ + y 2 ∗ 是 y ′ ′ + p ( x ) y ′ + q ( x ) y = f ( x ) 的 特 解 ( 4 ) 若 y 1 ∗ 和 y 2 ∗ 分 别 是 ( 一 ) 的 两 个 特 解 , 则 y 1 ∗ − y 2 ∗ 是 ( 二 ) 的 解 \begin{aligned} &以二阶线性方程为例,对高阶或一阶线性方程结论类似\\ &y''+p(x)y'+q(x)y=f(x)\quad (一)二阶线性非齐次微分方程\\ &y''+p(x)y'+q(x)y=0\quad (二)二阶线性齐次微分方程\\ (1)&若y_1,y_2是方程(二)的两个线性无关的解,则C_1y_1+C_2y_2是(二)的通解\\ (2)&若C_1y_1+C_2y_2是(二)的通解,y^*是(一)的特解,则C_1y_1+C_2y_2+y^*是(一)的通解\\ (3)&若(一)中的非齐次项f(x)=f_1(x)+f_2(x),且y_1^*是y''+p(x)y+q(x)y=f_2(x)的特解,\\ &y_2*是y''+p(x)y'+q(x)y=f_2(x)的特解,则y_1^*+y_2^*是y''+p(x)y'+q(x)y=f_(x)的特解\\ (4)&若y_1^*和y_2^*分别是(一)的两个特解,则y_1^*-y_2^*是(二)的解\\ \end{aligned} (1)(2)(3)(4)线线y+p(x)y+q(x)y=f(x)()线y+p(x)y+q(x)y=0()线y1,y2()线C1y1+C2y2()C1y1+C2y2()y()C1y1+C2y2+y()()f(x)=f1(x)+f2(x),y1y+p(x)y+q(x)y=f2(x),y2y+p(x)y+q(x)y=f2(x),y1+y2y+p(x)y+q(x)y=f(x)y1y2()y1y2()

[ 例 1 ] 已 知 y 1 = e 3 x − x e 2 x , y 2 = e x − x e 2 x , y 3 = − x e 2 x 是 某 二 项 常 数 系 数 非 齐 次 微 分 方 程 的 3 个 特 解 , 则 该 方 程 满 足 y ( 0 ) = 0 , y ′ ( 0 ) = 1 的 特 解 为 { y 1 − y 3 = e 3 x y 2 − y 3 = e x    ⟹    c 1 e 3 x + c 2 e x    ⟹    c 1 e 3 x + c 2 e x + ( − x e 2 x ) = y 又 y ( 0 ) = 0 , y ′ ( 0 ) = 1    ⟹    c 1 = 1 , c 2 = − 1 , 故 y = e 3 x − e x − x e 2 x \begin{aligned} [例1]&\color{maroon}已知y_1=e^{3x}-xe^{2x},y_2=e^x-xe^{2x},y_3=-xe^{2x}是某二项常数系数非齐次微分方程的3个特解,\\ &\color{maroon}则该方程满足y(0)=0,y'(0)=1的特解为\\ &\begin{cases}y_1-y_3=e^{3x}\\y_2-y_3=e^x\end{cases}\implies c_1e^{3x}+c_2e^x\\ &\implies c_1e^{3x}+c_2e^x+(-xe^{2x})=y\\ &又y(0)=0,y'(0)=1\implies c_1=1,c_2=-1,故y=e^{3x}-e^x-xe^{2x}\\ \end{aligned} [1]y1=e3xxe2x,y2=exxe2x,y3=xe2x3y(0)=0,y(0)=1{y1y3=e3xy2y3=exc1e3x+c2exc1e3x+c2ex+(xe2x)=yy(0)=0,y(0)=1c1=1,c2=1,y=e3xexxe2x

二阶常系数齐次线性微分方程的通解

二 阶 常 系 数 齐 次 线 性 微 分 方 程 y ′ ′ + p y ′ + q y = 0 对 应 的 特 征 方 程 为 λ 2 + p λ + q = 0 , 其 对 应 的 两 个 根 为 λ 1 , λ 2 . ( 1 ) 若 λ 1 ̸ = λ 2    ⟹    通 解 y = C 1 e λ 1 x + C 2 e λ 2 x ( 2 ) 若 λ 1 = λ 2 = λ    ⟹    通 解 y = ( C 1 + C 2 x ) e λ x ( 3 ) 若 λ 1 , 2 = α ± β i    ⟹    通 解 y = ( C 1 cos ⁡ β x + C 2 sin ⁡ β x ) e α x [ 例 1 ] 微 分 方 程 y ′ ′ + 2 y ′ + 3 y = 0 的 通 解 为 y = ‾ 由 λ 2 + 2 λ + 3 = 0 , 知 λ 1 , 2 = − 2 ± 4 a c − b 2 2 = − 1 ± 2 i    ⟹    y 通 = ( C 1 cos ⁡ 2 x + C 2 sin ⁡ 2 x ) e − x \begin{aligned} &二阶常系数齐次线性微分方程y''+py'+qy=0\\ &对应的特征方程为\lambda^2+p\lambda+q=0,其对应的两个根为\lambda_1,\lambda_2.\\ &(1)若\lambda_1\not=\lambda_2\implies 通解y=C_1e^{\lambda_1x}+C_2e^{\lambda_2x}\\ &(2)若\lambda_1=\lambda_2=\lambda\implies通解y=(C_1+C_2x)e^{\lambda x}\\ &(3)若\lambda_{1,2}=\alpha\pm\beta i\implies通解y=(C_1\cos\beta x+C_2\sin\beta x)e^{\alpha x}\\ [例1]&\color{maroon}微分方程y''+2y'+3y=0的通解为y=\underline{\quad}\\ &由\lambda^2+2\lambda+3=0,知\lambda_{1,2}=\frac{-2\pm\sqrt{4ac-b^2}}{2}=-1\pm\sqrt2i\\ &\implies y_通=(C_1\cos\sqrt2x+C_2\sin\sqrt2x)e^{-x}\\ \end{aligned} [1]线y+py+qy=0λ2+pλ+q=0,λ1,λ2.(1)λ1̸=λ2y=C1eλ1x+C2eλ2x(2)λ1=λ2=λy=(C1+C2x)eλx(3)λ1,2=α±βiy=(C1cosβx+C2sinβx)eαxy+2y+3y=0y=λ2+2λ+3=0,λ1,2=22±4acb2 =1±2 iy=(C1cos2 x+C2sin2 x)ex

二阶常系数非齐次线性微分方程的特解

二 阶 常 系 数 非 齐 次 线 性 微 分 方 程 y ′ ′ + p y ′ + q y = f ( x ) ( 1 ) 若 f ( x ) = P n ( x ) e α x    ⟹    特 解 y ∗ = e α x Q n ( x ) x k , 其 中 Q n ( x ) 是 x 的 n 次 一 般 多 项 式 , k = { 0 , α 不 是 特 征 方 程 的 根 1 , α 是 特 征 方 程 的 单 根 2 , α 是 特 征 方 程 的 重 根 ( 2 ) 若 f ( x ) = e α x [ P m ( x ) cos ⁡ β x + P n ( x ) sin ⁡ β x ]    ⟹    特 解 y ∗ = e α x [ Q 1 ( 1 ) ( x ) cos ⁡ β x + Q 1 ( 2 ) ( x ) sin ⁡ β x ] x k 其 中 Q 1 ( 1 ) 和 Q 1 ( 2 ) ( x ) 是 x 的 两 个 不 同 的 l 次 一 般 多 项 式 , l = m a x { m . n } , k = { 0 , α ± β i 不 是 特 征 方 程 的 根 1 , α ± β i 是 特 征 方 程 的 根 \begin{aligned} &二阶常系数非齐次线性微分方程y''+py'+qy=f(x)\\ &(1)若f(x)=P_n(x)e^{\alpha x}\\ &\implies 特解y^*=e^{\alpha x}Q_n(x)x^k,其中Q_n(x)是x的n次一般多项式,k=\begin{cases}0,\alpha不是特征方程的根\\1,\alpha是特征方程的单根\\2,\alpha是特征方程的重根\end{cases}\\ &(2)若f(x)=e^{\alpha x}[P_m(x)\cos\beta x+P_n(x)\sin\beta x]\\ &\implies 特解y^*=e^{\alpha x}[Q_1^{(1)}(x)\cos\beta x+Q_1^{(2)}(x)\sin\beta x]x^k\\ &其中Q_1^{(1)}和Q_1^{(2)}(x)是x的两个不同的l次一般多项式,l=max\{m.n\},k=\begin{cases}0,\alpha\pm\beta i不是特征方程的根\\1,\alpha\pm\beta i是特征方程的根\end{cases}\\ \end{aligned} 线y+py+qy=f(x)(1)f(x)=Pn(x)eαxy=eαxQn(x)xk,Qn(x)xnk=0,α1,α2,α(2)f(x)=eαx[Pm(x)cosβx+Pn(x)sinβx]y=eαx[Q1(1)(x)cosβx+Q1(2)(x)sinβx]xkQ1(1)Q1(2)(x)xll=max{m.n},k={0,α±βi1,α±βi

  [ 例 1 ] 微 分 方 程 y ′ ′ − 4 y ′ + 8 y = e 2 x ( 1 + cos ⁡ 2 x ) 的 特 解 可 设 为 y ∗ = y 1 ∗ = e 2 x ⋅ A ⋅ x k = A e 2 x y 2 ∗ = e 2 x ( B cos ⁡ 2 x + C sin ⁡ 2 x ) ⋅ x k = x e 2 x ( B cos ⁡ 2 x + C sin ⁡ 2 x ) [ 例 2 ] 以 y = C 1 e x + C 2 e − 2 x + x e x 为 通 解 的 微 分 方 程 是 λ 1 = 1 , λ 2 = − 2    ⟹    ( λ − 1 ) ( λ + 2 ) = 0 即 λ 2 + λ − 2 = 0    ⟹    y ′ ′ + y ′ − 2 y = f ( x ) 且 y = x e x 是 解 故 ( x + 2 ) e x + ( x + 1 ) e x − 2 x e x = f ( x ) = 3 e x [ 例 3 ] 设 有 二 阶 线 性 微 分 方 程 ( 1 − x 2 ) d 2 y d x 2 + ( 2 1 − x 2 − x ) d y d x + y = 2 x ( 1 ) 作 换 元 x = sin ⁡ t ( − π 2 ≤ t ≤ π 2 ) , 把 上 述 方 程 变 换 成 y 关 于 t 的 微 分 方 程 ; ( 2 ) 求 原 微 分 方 程 的 通 解 ( 1 ) d y d x = d y d t ] ⋅ d t d x = 1 cos ⁡ t ⋅ d y d t d 2 y d x 2 = d d t ( 1 cos ⁡ t ⋅ d y d t ) ⋅ d t d x = ( sin ⁡ t cos ⁡ 2 t ⋅ d y d t + 1 cos ⁡ t d 2 y d t 2 ) ⋅ 1 cos ⁡ t    ⟹    sin ⁡ t cos ⁡ t ⋅ d y d t + d 2 y d t 2 + 2 d y d t − sin ⁡ t cos ⁡ t d y d t + y = 2 sin ⁡ t 故 d 2 y d t 2 + 2 d y d t + y = 2 sin ⁡ t ( − π 2 ≤ t ≤ π 2 ) ( 2 ) y = ( c 1 + c 2 arcsin ⁡ x ) e − arcsin ⁡ x − 1 − x 2 , c 1 , c 2 为 ∀ 常 数 其 中 t = arcsin ⁡ x , cos ⁡ t = 1 − sin ⁡ 2 t = 1 − x 2 [ 例 4 ] 设 y ( x ) 是 ( 0 , 3 2 ) 内 的 可 导 函 数 , 且 y ( 1 ) = 0. 点 P 是 曲 线 l : y = y ( x ) 上 任 一 点 , l 在 点 P 处 的 切 线 与 y 轴 交 于 点 ( 0 , Y p ) , 法 线 与 x 轴 交 于 点 ( X p , 0 ) . 若 X p = Y p , 求 曲 线 l 的 方 程 曲 线 I : y = y ( x ) 在 点 P ( x , y ) 处 的 切 线 方 程 为 Y − y = y ′ ( X − x ) , 令 X = 0 , 得 Y p = y − x y ′ 曲 线 I : y = y ( x ) 在 点 P ( x , y ) 处 的 法 线 方 程 为 Y − y = − 1 y ′ ( X − x ) , 令 Y = 0 , 得 X p = x + y y ′ 由 题 意 , x + y y ′ = y = x y ′ , 即 y ′ = y − x y + x = y x − 1 y x + 1 , 令 y x = u 可 解 得 arctan ⁡ y x + 1 2 ln ⁡ ( x 2 + y 2 ) = C , 又 y ( 1 ) = 0 , 故 曲 线 I 方 程 为 arctan ⁡ y x + 1 2 ln ⁡ ( x 2 + y 2 ) = 0 \begin{aligned} \ [例1]&\color{maroon}微分方程y''-4y'+8y=e^{2x}(1+\cos2x)的特解可设为y^*=\\ &y_1^*=e^{2x}\cdot A\cdot x^k=Ae^{2x}\\ &y_2^*=e^{2x}(B\cos2x+C\sin2x)\cdot x^k=xe^{2x}(B\cos2x+C\sin2x)\\ [例2]&\color{maroon}以y=C_1e^x+C_2e^{-2x}+xe^x为通解的微分方程是\\ &\lambda_1=1,\lambda_2=-2\implies (\lambda-1)(\lambda+2)=0\\ &即\lambda^2+\lambda-2=0\implies y''+y'-2y=f(x)且y=xe^{x}是解\\ &故(x+2)e^x+(x+1)e^x-2xe^x=f(x)=3e^x\\ [例3]&\color{maroon}设有二阶线性微分方程(1-x^2)\frac{d^2y}{dx^2}+(2\sqrt{1-x^2}-x)\frac{dy}{dx}+y=2x\\ &\color{maroon}(1)作换元x=\sin t(-\frac{\pi}2\leq t\leq \frac{\pi}2),把上述方程变换成y关于t的微分方程;\\ &\color{maroon}(2)求原微分方程的通解\\ (1)&\frac{dy}{dx}=\frac{dy}{dt}]\cdot\frac{dt}{dx}=\frac1{\cos t}\cdot\frac{dy}{dt}\\ &\frac{d^2y}{dx^2}=\frac d{dt}(\frac1{\cos t}\cdot\frac{dy}{dt})\cdot\frac{dt}{dx}\\ &=(\frac{\sin t}{\cos^2t}\cdot\frac{dy}{dt}+\frac{1}{\cos t}\frac{d^2y}{dt^2})\cdot\frac1{\cos t}\\ &\implies \frac{\sin t}{\cos t}\cdot\frac{dy}{dt}+\frac{d^2y}{dt^2}+2\frac{dy}{dt}-\frac{\sin t}{\cos t}\frac{dy}{dt}+y=2\sin t\\ &故\frac{d^2y}{dt^2}+2\frac{dy}{dt}+y=2\sin t(-\frac\pi2\leq t\leq\frac\pi2)\\ (2)&y=(c_1+c_2\arcsin x)e^{-\arcsin x}-\sqrt{1-x^2},c_1,c_2为\forall常数\\ &其中t=\arcsin x,\cos t=\sqrt{1-\sin^2t}=\sqrt{1-x^2}\\ [例4]&\color{maroon}设y(x)是(0,\frac32)内的可导函数,且y(1)=0.点P是曲线l:y=y(x)上任一点,\\ &\color{maroon}l在点P处的切线与y轴交于点(0,Y_p),法线与x轴交于点(X_p,0).若X_p=Y_p,求曲线l的方程\\ &曲线I:y=y(x)在点P(x,y)处的切线方程为Y-y=y'(X-x),令X=0,得Y_p=y-xy'\\ &曲线I:y=y(x)在点P(x,y)处的法线方程为Y-y=-\frac1{y'}(X-x),令Y=0,得X_p=x+yy'\\ &由题意,x+yy'=y=xy',即y'=\frac{y-x}{y+x}=\frac{\frac yx-1}{\frac yx+1},令\frac yx=u\\ &可解得\arctan\frac yx+\frac12\ln(x^2+y^2)=C,又y(1)=0,故曲线I方程为\arctan\frac yx+\frac12\ln(x^2+y^2)=0 \end{aligned}  [1][2][3](1)(2)[4]y4y+8y=e2x(1+cos2x)y=y1=e2xAxk=Ae2xy2=e2x(Bcos2x+Csin2x)xk=xe2x(Bcos2x+Csin2x)y=C1ex+C2e2x+xexλ1=1,λ2=2(λ1)(λ+2)=0λ2+λ2=0y+y2y=f(x)y=xex(x+2)ex+(x+1)ex2xex=f(x)=3ex线(1x2)dx2d2y+(21x2 x)dxdy+y=2x(1)x=sint(2πt2π),yt;(2)dxdy=dtdy]dxdt=cost1dtdydx2d2y=dtd(cost1dtdy)dxdt=(cos2tsintdtdy+cost1dt2d2y)cost1costsintdtdy+dt2d2y+2dtdycostsintdtdy+y=2sintdt2d2y+2dtdy+y=2sint(2πt2π)y=(c1+c2arcsinx)earcsinx1x2 c1,c2t=arcsinx,cost=1sin2t =1x2 y(x)(0,23)y(1)=0.P线l:y=y(x)lP线y(0,Yp),线x(Xp,0).Xp=Yp,线l线I:y=y(x)P(x,y)线Yy=y(Xx),X=0Yp=yxy线I:y=y(x)P(x,y)线Yy=y1(Xx),Y=0Xp=x+yyx+yy=y=xy,y=y+xyx=xy+1xy1,xy=uarctanxy+21ln(x2+y2)=C,y(1)=0,线Iarctanxy+21ln(x2+y2)=0

多元函数微分学

基本概念

二重极限

定义

若 对 ∀ ϵ &gt; 0 , ∃ δ &gt; 0 , 当 0 &lt; ( x − x 0 ) 2 + ( y − y 0 ) 2 &lt; δ 时 , 恒 有 ∣ f ( x , y ) − A ∣ &lt; ϵ , 则 称 A 是 f ( x , y ) 在 ( x 0 , y 0 ) 点 的 极 限 [ 注 ] ( 1 ) { 一 元 极 限 中 x → x 0 有 且 仅 有 两 种 方 式 二 元 极 限 中 有 无 穷 任 意 多 种 方 式 ( 2 ) 若 有 两 条 不 同 路 径 ( 如 直 线 y = k x , 抛 物 线 x = y 2 ) 使 极 限 lim ⁡ x → 0 , y → 0 f ( x , y ) 值 不 相 等 或 某 一 条 路 径 使 极 限 lim ⁡ x → 0 , y → 0 f ( x , y ) 值 不 存 在 , 则 说 明 二 重 极 限 lim ⁡ x → 0 , y → 0 f ( x , y ) 不 存 在 ( 3 ) 主 要 方 法 : 化 成 一 元 极 限 、 等 价 代 换 、 无 穷 小 乘 有 界 、 夹 逼 准 则 ( 4 ) 二 重 极 限 保 持 了 一 元 极 限 的 各 种 性 质 , 如 唯 一 性 、 局 部 有 界 性 、 局 部 保 号 性 及 运 算 性 质 ( 5 ) 所 求 极 限 得 二 元 函 数 f ( x , y ) 如 果 使 齐 次 有 理 式 函 数 , 即 分 子 、 分 母 分 别 均 是 齐 次 有 理 函 数 , 考 察 ( x , y ) → ( 0 , 0 ) 时 得 极 限 , 可 用 下 述 命 题 : 设 f ( x , y ) = P ( x , y ) Q ( x , y ) = m 次 n 次 , 其 中 分 子 分 母 是 互 质 多 项 式 , 则 1. 当 m &gt; n 时 , 若 方 程 Q ( 1 , y ) = 0 与 Q ( x , 1 ) = 0 均 无 实 根 , 则 lim ⁡ x → 0 , y → 0 f ( x , y ) = 0 ; 若 方 程 Q ( 1 , y ) = 0 与 Q ( x , 1 ) = 0 有 实 根 , 则 lim ⁡ x → 0 , y → 0 f ( x , y ) 不 存 在 2. 当 m ≤ n 时 , lim ⁡ x → 0 , y → 0 f ( x , y ) 不 存 在 \begin{aligned} &amp;若对\forall\epsilon&gt;0,\exists\delta&gt;0,当0&lt;\sqrt{(x-x_0)^2+(y-y_0)^2}&lt;\delta时,\\ &amp;恒有|f(x,y)-A|&lt;\epsilon,则称A是f(x,y)在(x_0,y_0)点的极限\\ [注](1)&amp;\begin{cases}一元极限中x\to x_0有且仅有两种方式\\二元极限中有无穷任意多种方式\end{cases}\\ (2)&amp;若有两条不同路径(如直线y=kx,抛物线x=y^2)使极限\lim_{x\to0,y\to0}f(x,y)值不相等\\ &amp;或某一条路径使极限\lim_{x\to0,y\to0}f(x,y)值不存在,则说明二重极限\lim_{x\to0,y\to0}f(x,y)不存在\\ (3)&amp;主要方法:化成一元极限、等价代换、无穷小乘有界、夹逼准则\\ (4)&amp;二重极限保持了一元极限的各种性质,如唯一性、局部有界性、局部保号性及运算性质\\ (5)&amp;所求极限得二元函数f(x,y)如果使齐次有理式函数,即分子、分母分别均是齐次有理函数,\\ &amp;考察(x,y)\to(0,0)时得极限,可用下述命题:\\ &amp;设f(x,y)=\frac{P(x,y)}{Q(x,y)}=\frac{m次}{n次},其中分子分母是互质多项式,则\\ &amp;1.当m&gt;n时,若方程Q(1,y)=0与Q(x,1)=0均无实根,则\lim_{x\to0,y\to0}f(x,y)=0;\\ &amp;若方程Q(1,y)=0与Q(x,1)=0有实根,则\lim_{x\to0,y\to0}f(x,y)不存在\\ &amp;2.当m\leq n时,\lim_{x\to0,y\to0}f(x,y)不存在\\ \end{aligned} [](1)(2)(3)(4)(5)ϵ>0,δ>0,0<(xx0)2+(yy0)2 <δf(x,y)A<ϵ,Af(x,y)(x0,y0){xx0线y=kx线x=y2使x0,y0limf(x,y)使x0,y0limf(x,y)x0,y0limf(x,y)f(x,y)使(x,y)(0,0)f(x,y)=Q(x,y)P(x,y)=nm,1.m>nQ(1,y)=0Q(x,1)=0x0,y0limf(x,y)=0;Q(1,y)=0Q(x,1)=0x0,y0limf(x,y)2.mnx0,y0limf(x,y)

[ 注 3 相 关 ] 1. lim ⁡ x → 0 , y → 0 x 2 + y 2 − sin ⁡ x 2 + y 2 ( x 2 + y 2 ) 3 令 x 2 + y 2 = t , 则 I = lim ⁡ t → 0 t − sin ⁡ t t 3 = 1 6 2. lim ⁡ x → 0 , y → 0 sin ⁡ x y y = lim ⁡ x → 0 , y → 0 x y y = lim ⁡ x → 0 , y → 0 x = 0 3. lim ⁡ x → 0 , y → 0 x y 2 x 2 + y 2 = lim ⁡ x → 0 , y → 0 x ⋅ y 2 x 2 + y 2 = 0 \color{blue}[注3相关]\\\color{black} \begin{aligned} 1.&amp;\lim_{x\to0,y\to0}\frac{\sqrt{x^2+y^2}-\sin\sqrt{x^2+y^2}}{(\sqrt{x^2+y^2})^3}\\ &amp;令\sqrt{x^2+y^2}=t,则I=\lim_{t\to0}\frac{t-\sin t}{t^3}=\frac16\\ 2.&amp;\lim_{x\to0,y\to0}\frac{\sin xy}{y}\\ &amp;=\lim_{x\to0,y\to0}\frac{xy}{y}=\lim_{x\to0,y\to0}x=0\\ 3.&amp;\lim_{x\to0,y\to0}\frac{xy^2}{x^2+y^2}=\lim_{x\to0,y\to0}x\cdot\frac{y^2}{x^2+y^2}=0\\ \end{aligned} [3]1.2.3.x0,y0lim(x2+y2 )3x2+y2 sinx2+y2 x2+y2 =t,I=t0limt3tsint=61x0,y0limysinxy=x0,y0limyxy=x0,y0limx=0x0,y0limx2+y2xy2=x0,y0limxx2+y2y2=0

[ 注 5 相 关 ] 1. lim ⁡ x → 0 , y → 0 x 3 + y 3 x 2 + y 2 m = 3 &gt; n = 2 , 且 Q ( 1 , y ) = 1 + y 2 = 0 和 Q ( x , 1 ) = x 2 + 1 = 0 无 实 根 &ThickSpace; ⟹ &ThickSpace; I = 0 2. lim ⁡ x → 0 , y → 0 x y x + y m = 2 &gt; n = 1 , 且 Q ( 1 , y ) = 1 + y = 0 有 实 根 &ThickSpace; ⟹ &ThickSpace; 不 ∃ 3. lim ⁡ x → 0 , y → 0 x + y x − y m = 1 = n = 1 &ThickSpace; ⟹ &ThickSpace; 不 ∃ 4. lim ⁡ x → 0 , y → 0 x 2 + y 2 x 3 + y 3 m = 2 &lt; n = 3 &ThickSpace; ⟹ &ThickSpace; 不 ∃ \color{blue}[注5相关]\\\color{black} \begin{aligned} 1.&amp;\lim_{x\to0,y\to0}\frac{x^3+y^3}{x^2+y^2}\\ &amp; m=3&gt;n=2,且Q(1,y)=1+y^2=0和Q(x,1)=x^2+1=0 无实根\implies I=0\\ 2.&amp;\lim_{x\to0,y\to0}\frac{xy}{x+y}\\ &amp; m=2&gt;n=1,且Q(1,y)=1+y=0有实根\implies 不\exists\\ 3.&amp;\lim_{x\to0,y\to0}\frac{x+y}{x-y}\\ &amp; m=1=n=1\implies 不\exists\\ 4.&amp;\lim_{x\to0,y\to0}\frac{x^2+y^2}{x^3+y^3}\\ &amp; m=2&lt;n=3 \implies 不\exists \end{aligned} [5]1.2.3.4.x0,y0limx2+y2x3+y3m=3>n=2,Q(1,y)=1+y2=0Q(x,1)=x2+1=0I=0x0,y0limx+yxym=2>n=1,Q(1,y)=1+y=0x0,y0limxyx+ym=1=n=1x0,y0limx3+y3x2+y2m=2<n=3

[ 注 2 相 关 ] 证 明 lim ⁡ x → 0 , y → 0 x 2 y x 4 + y 2 不 存 在 I y = k b → = lim ⁡ x → 0 k x 3 x 4 + k 2 x 2 = lim ⁡ x → 0 k x x 2 + k 2 = 0 I y = x 2 → lim ⁡ x → 0 x 4 x 4 + x 4 = 1 2 ∴ 二 元 极 限 不 存 在 \color{blue}[注2相关]\\\color{black} \begin{aligned} 证明&amp;\lim_{x\to0,y\to0}\frac{x^2y}{x^4+y^2}不存在\\ &amp;I\underrightarrow{y=kb}=\lim_{x\to0}\frac{kx^3}{x^4+k^2x^2}=\lim_{x\to0}\frac{kx}{x^2+k^2}=0\\ &amp;I\underrightarrow{y=x^2}\lim_{x\to0}\frac{x^4}{x^4+x^4}=\frac12\\ &amp;\therefore 二元极限不存在\\ \end{aligned} [2]x0,y0limx4+y2x2yI y=kb=x0limx4+k2x2kx3=x0limx2+k2kx=0I y=x2x0limx4+x4x4=21

连续

定义

若 lim ⁡ x → 0 , y → 0 f ( x , y ) = f ( x 0 , y 0 ) , 则 称 f ( x , y ) 在 点 ( x 0 , y 0 ) 处 连 续 [ 注 ] 不 讨 论 间 断 点 \begin{aligned} &amp;若\lim_{x\to0,y\to0}f(x,y)=f(x_0,y_0),则称f(x,y)在点(x_0,y_0)处连续\\ &amp;[注]不讨论间断点 \end{aligned} x0,y0limf(x,y)=f(x0,y0),f(x,y)(x0,y0)[]

偏导数

定义

z = f ( x , y ) 在 ( x 0 , y 0 ) 处 的 偏 导 数 f x ′ ( x 0 , y 0 ) = lim ⁡ Δ x → 0 f ( x 0 + Δ x , y 0 ) − f ( x 0 , y 0 ) Δ x = lim ⁡ x → x 0 f ( x , y 0 ) − f ( x 0 , y 0 ) x − x 0 f y ′ ( x 0 , y 0 ) = lim ⁡ Δ y → 0 f ( x 0 , y 0 + Δ y ) − f ( x 0 , y 0 ) Δ y = lim ⁡ y → y 0 f ( x 0 , y ) − f ( x 0 , y 0 ) y − y 0 1. 偏 导 数 实 际 上 就 是 对 应 一 元 函 数 得 导 数 , 如 : f x ′ ( x 0 , y 0 ) = φ ′ ( x ) ∣ x = x 0 = [ f ( x , y 0 ) ] ′ ∣ x → x 0 f y ′ ( x 0 , y 0 ) = φ ′ ( y ) ∣ y = y 0 = [ f ( x 0 , y ) ] ′ ∣ y → y 0 2. 求 f ( x , y ) 的 偏 导 数 只 需 先 把 其 中 一 个 变 量 视 为 常 数 即 可 , 如 求 f x ′ ( x , y ) 时 , 把 f ( x , y ) 中 的 y 先 视 为 常 数 , y 偏 导 同 理 。 \begin{aligned} &amp;z=f(x,y)在(x_0,y_0)处的偏导数\\ &amp;f&#x27;_x(x_0,y_0)=\lim_{\Delta x\to0}\frac{f(x_0+\Delta x,y_0)-f(x_0,y_0)}{\Delta x}=\lim_{x\to x_0}\frac{f(x,y_0)-f(x_0,y_0)}{x-x_0}\\ &amp;f&#x27;_y(x_0,y_0)=\lim_{\Delta y\to0}\frac{f(x_0,y_0+\Delta y)-f(x_0,y_0)}{\Delta y}=\lim_{y\to y_0}\frac{f(x_0,y)-f(x_0,y_0)}{y-y_0}\\ &amp;1.偏导数实际上就是对应一元函数得导数,如:\\ &amp;f_x&#x27;(x_0,y_0)=\varphi&#x27;(x)|_{x=x_0}=[f(x,y_0)]&#x27;|_{x\to x_0}\\ &amp;f_y&#x27;(x_0,y_0)=\varphi&#x27;(y)|_{y=y_0}=[f(x_0,y)]&#x27;|_{y\to y_0}\\ &amp;2.求f(x,y)的偏导数只需先把其中一个变量视为常数即可,\\ &amp;如求f_x&#x27;(x,y)时,把f(x,y)中的y先视为常数,y偏导同理。 \end{aligned} z=f(x,y)(x0,y0)fx(x0,y0)=Δx0limΔxf(x0+Δx,y0)f(x0,y0)=xx0limxx0f(x,y0)f(x0,y0)fy(x0,y0)=Δy0limΔyf(x0,y0+Δy)f(x0,y0)=yy0limyy0f(x0,y)f(x0,y0)1.:fx(x0,y0)=φ(x)x=x0=[f(x,y0)]xx0fy(x0,y0)=φ(y)y=y0=[f(x0,y)]yy02.f(x,y)fx(x,y)f(x,y)yy

1. 设 f ( x , y ) = x 2 + ( y − 1 ) arcsin ⁡ y x , 则 ∂ f ∂ x ∣ ( 2 , 1 ) = f ( x , 1 ) = x 2 &ThickSpace; ⟹ &ThickSpace; ∂ f ∂ x ∣ ( 2 , 1 ) = ( x 2 ) ′ ∣ x = 2 = 4 2. 设 f ( x , y ) = e x x − y , 则 ‾ f x ′ = e x ⋅ ( x − y ) − e x ⋅ ( 1 − 0 ) ( x − y ) 2 f y ′ = 0 − e x ⋅ ( 0 − 1 ) ( x − y ) 2 &ThickSpace; ⟹ &ThickSpace; f x ′ + f y ′ = e x x − y = f \begin{aligned} 1.&amp;设f(x,y)=x^2+(y-1)\arcsin\sqrt{\frac yx},则\frac{\partial f}{\partial x}|_{(2,1)}=\\ &amp;f(x,1)=x^2\implies \frac{\partial f}{\partial x}|_{(2,1)}=(x^2)&#x27;|_{x=2}=4\\ 2.&amp;设f(x,y)=\frac{e^x}{x-y},则\underline{\quad}\\ &amp;f&#x27;_x=\frac{e^x\cdot(x-y)-e^x\cdot(1-0)}{(x-y)^2}\\ &amp;f&#x27;_y=\frac{0-e^x\cdot(0-1)}{(x-y)^2}\\ &amp;\implies f&#x27;_x+f&#x27;_y=\frac{e^x}{x-y}=f\\ \end{aligned} 1.2.f(x,y)=x2+(y1)arcsinxy ,xf(2,1)=f(x,1)=x2xf(2,1)=(x2)x=2=4f(x,y)=xyex,fx=(xy)2ex(xy)ex(10)fy=(xy)20ex(01)fx+fy=xyex=f

高阶偏导数

全微分

定义

判 定 二 元 函 数 f ( x , y ) 在 点 ( x 0 , y 0 ) 是 否 可 微 的 方 法 先 求 f x ′ ( x 0 , y 0 ) 与 f y ′ ( x 0 , y 0 ) , 若 有 一 个 不 存 在 , 则 直 接 不 可 微 ; 若 都 存 在 , 则 检 查 lim ⁡ x → 0 , y → 0 f ( x , y ) − f ( x 0 , y 0 ) − f x ′ ( x 0 , y 0 ) ( x − x 0 ) − f y ′ ( x 0 , y 0 ) ( y − y 0 ) ( x − x 0 ) 2 + ( y − y 0 ) 2 = 0 ? 若 等 于 0 , 则 可 微 , 若 不 等 于 0 或 不 存 在 , 则 不 可 微 。 \begin{aligned} &amp;判定二元函数f(x,y)在点(x_0,y_0)是否可微的方法\\ &amp;先求f_x&#x27;(x_0,y_0)与f_y&#x27;(x_0,y_0),若有一个不存在,则直接不可微;\\ &amp;若都存在,则检查\lim_{x\to0,y\to0}\frac{f(x,y)-f(x_0,y_0)-f_x&#x27;(x_0,y_0)(x-x_0)-f_y&#x27;(x_0,y_0)(y-y_0)}{\sqrt{(x-x_0)^2+(y-y_0)^2}}=0?\\ &amp;若等于0,则可微,若不等于0或不存在,则不可微。\\ \end{aligned} f(x,y)(x0,y0)fx(x0,y0)fy(x0,y0),x0,y0lim(xx0)2+yy0)2 f(x,y)f(x0,y0)fx(x0,y0)(xx0)fy(x0,y0)(yy0)=0?00

1. 讨 论 f ( x , y ) = { x 2 y x 2 + y 2 , ( x , y ) ≠ ( 0 , 0 ) 0 , ( x , y ) = ( 0 , 0 ) 在 ( 0 , 0 ) 点 可 微 性 f x ′ ( 0 , 0 ) = lim ⁡ x → 0 f ( x , 0 ) − f ( 0 , 0 ) x = lim ⁡ x → 0 0 − 0 x = 0 ( ∃ ) 同 理 f y ′ ( 0 , 0 ) = 0 ( ∃ ) lim ⁡ x → 0 , y → 0 f ( x , y ) − f ( 0 , 0 ) − 0 x 2 + y 2 = lim ⁡ x → 0 , y → 0 x 2 y ( x 2 + y 2 ) 3 / 2 ( m = 3 = n = 3 ) 故 f ( x , y ) 在 ( 0 , 0 ) 处 不 可 微 \begin{aligned} 1.&amp;讨论f(x,y)=\begin{cases}\frac{x^2y}{x^2+y^2},(x,y)\neq(0,0)\\0,(x,y)=(0,0)\end{cases}在(0,0)点可微性\\ &amp;f_x&#x27;(0,0)=\lim_{x\to0}\frac{f(x,0)-f(0,0)}x=\lim_{x\to0}\frac{0-0}{x}=0(\exists)\\ &amp;同理f_y&#x27;(0,0)=0(\exists)\\ &amp;\lim_{x\to0,y\to0}\frac{f(x,y)-f(0,0)-0}{\sqrt{x^2+y^2}}=\lim_{{x\to0,y\to0}}\frac{x^2y}{(x^2+y^2)^{3/2}}\\ &amp;(m=3=n=3)故f(x,y)在(0,0)处不可微\\ \end{aligned} 1.f(x,y)={x2+y2x2y,(x,y)̸=(0,0)0,(x,y)=(0,0)(0,0)fx(0,0)=x0limxf(x,0)f(0,0)=x0limx00=0()fy(0,0)=0()x0,y0limx2+y2 f(x,y)f(0,0)0=x0,y0lim(x2+y2)3/2x2y(m=3=n=3)f(x,y)(0,0)

概念之间的关系

两个偏导数连续→二元函数可微→二元函数连续 且 二元函数可偏导

1. 设 f ( x , y ) 具 有 一 阶 连 续 偏 导 数 , 且 对 任 意 的 ( x , y ) 都 有 ∂ f ( x . y ) ∂ x &gt; 0 , ∂ f ( x . y ) ∂ y &lt; 0 , 则 A . f ( 0 , 0 ) &gt; f ( 1 , 1 ) B . f ( 0 , 0 ) &lt; f ( 1 , 1 ) C . f ( 0 , 1 ) &gt; f ( 1 , 0 ) D . f ( 0 , 1 ) &lt; f ( 1 , 0 ) 由 题 意 , 得 对 x 单 调 递 增 ; 对 y 单 调 递 减 画 图 可 得 D 2. 设 f ( x , y ) = e x 2 + y 4 , 则 f ( x , 0 ) = e ∣ x ∣ 在 x = 0 处 不 可 导 &ThickSpace; ⟹ &ThickSpace; ∂ f ∂ x ∣ ( 0 , 0 ) 不 ∃ f ( 0 , y ) = e y 2 在 y = 0 处 可 导 &ThickSpace; ⟹ &ThickSpace; ∂ f ∂ y ∣ ( 0 , 0 ) ∃ 3. 设 f ( x , y ) = { x 2 y 2 x 2 + y 2 , ( x , y ) ≠ ( 0 , 0 ) 0 , ( x , y ) = ( 0 , 0 ) , 讨 论 f ( x , y ) 在 点 ( 0 , 0 ) 的 连 续 性 、 可 导 性 及 可 微 性 lim ⁡ x → 0 , y → 0 f ( x , y ) = lim ⁡ x → 0 , y → 0 x 2 y 2 x 2 + y 2 = 0 = f ( 0 , 0 ) , 故 连 续 f x ′ ( 0 , 0 ) = lim ⁡ x → 0 f ( x , 0 ) − f ( 0 , 0 ) x = lim ⁡ x → 0 0 − 0 x = 0 ∃ 由 对 称 性 可 知 , f y ′ ( 0 , 0 ) = 0 ∃ lim ⁡ x → 0 , y → 0 f ( x , y ) − f ( 0 , 0 ) − 0 x + y 2 = lim ⁡ x → 0 , , y → 0 x 2 y 2 ( x 2 + y 2 ) 3 / 2 = 0 &ThickSpace; ⟹ &ThickSpace; f ( x , y ) 在 ( 0 , 0 ) 处 可 微 4. 已 知 ( a x y 3 − y 2 cos ⁡ x ) d x + ( 1 + b y sin ⁡ x + 3 x 2 y 2 ) d y 为 某 一 函 数 u ( x , y ) 的 全 微 分 , 则 ∂ u ∂ x = a x y 3 − y 2 cos ⁡ x ∂ u ∂ y = 1 + b y sin ⁡ x + 3 x 2 y 2 &ThickSpace; ⟹ &ThickSpace; ∂ 2 u ∂ x ∂ y = 3 a x y 2 − 2 y cos ⁡ x &ThickSpace; ⟹ &ThickSpace; ∂ 2 u ∂ y ∂ x = b y cos ⁡ x + 6 x y 2 &ThickSpace; ⟹ &ThickSpace; a = 2 , b = − 2 \begin{aligned} 1.&amp;设f(x,y)具有一阶连续偏导数,且对任意的(x,y)都有\frac{\partial f(x.y)}{\partial x}&gt;0,\frac{\partial f(x.y)}{\partial y}&lt;0,则\\ &amp;A.f(0,0)&gt;f(1,1)\quad B.f(0,0)&lt;f(1,1)\quad C.f(0,1)&gt;f(1,0)\quad D.f(0,1)&lt;f(1,0)\\ &amp;由题意,得对x单调递增;对y单调递减\\ &amp;画图可得D\\ 2.&amp;设f(x,y)=e^{\sqrt{x^2+y^4}},则\\ &amp;f(x,0)=e^{|x|}在x=0处不可导\implies\frac{\partial f}{\partial x}|_{(0,0)}不\exists\\ &amp;f(0,y)=e^{y^2}在y=0处可导\implies \frac{\partial f}{\partial y}|_{(0,0)}\exists\\ 3.&amp;设f(x,y)=\begin{cases}\frac{x^2y^2}{x^2+y^2},(x,y)\neq(0,0)\\0,(x,y)=(0,0)\end{cases},讨论f(x,y)在点(0,0)的连续性、可导性及可微性\\ &amp;\lim_{{x\to0,y\to0}}f(x,y)=\lim_{{x\to0,y\to0}}\frac{x^2y^2}{x^2+y^2}=0=f(0,0),故连续\\ &amp;f_x&#x27;(0,0)=\lim_{x\to0}\frac{f(x,0)-f(0,0)}x=\lim_{x\to0}\frac{0-0}{x}=0\quad\exists\\ &amp;由对称性可知,f_y&#x27;(0,0)=0\quad\exists\\ &amp;\lim_{{x\to0,y\to0}}\frac{f(x,y)-f(0,0)-0}{\sqrt{x^+y^2}}=\lim_{{x\to0,,y\to0}}\frac{x^2y^2}{(x^2+y^2)^{3/2}}=0\\ &amp;\implies f(x,y)在(0,0)处可微\\ 4.&amp;已知(axy^3-y^2\cos x)dx+(1+by\sin x+3x^2y^2)dy为某一函数u(x,y)的全微分,则\\ &amp;\frac{\partial u}{\partial x}=axy^3-y^2\cos x\\ &amp;\frac{\partial u}{\partial y}=1+by\sin x+3x^2y^2\\ &amp;\implies \frac{\partial^2u}{\partial x\partial y}=3axy^2-2y\cos x\\ &amp;\implies \frac{\partial^2u}{\partial y\partial x}=by\cos x+6xy^2\\ &amp;\implies a=2,b=-2\\ \end{aligned} 1.2.3.4.f(x,y)(x,y)xf(x.y)>0,yf(x.y)<0,A.f(0,0)>f(1,1)B.f(0,0)<f(1,1)C.f(0,1)>f(1,0)D.f(0,1)<f(1,0)xyDf(x,y)=ex2+y4 ,f(x,0)=exx=0xf(0,0)f(0,y)=ey2y=0yf(0,0)f(x,y)={x2+y2x2y2,(x,y)̸=(0,0)0,(x,y)=(0,0),f(x,y)(0,0)x0,y0limf(x,y)=x0,y0limx2+y2x2y2=0=f(0,0),fx(0,0)=x0limxf(x,0)f(0,0)=x0limx00=0fy(0,0)=0x0,y0limx+y2 f(x,y)f(0,0)0=x0,,y0lim(x2+y2)3/2x2y2=0f(x,y)(0,0)(axy3y2cosx)dx+(1+bysinx+3x2y2)dyu(x,y)xu=axy3y2cosxyu=1+bysinx+3x2y2xy2u=3axy22ycosxyx2u=bycosx+6xy2a=2,b=2

复合函数及隐函数的偏导数与全微分

复合函数的链式求导法则

定义

1. 设 z = f ( u , v , x ) , u = u ( x , y ) , v = v ( y ) 都 是 可 微 函 数 , 求 ∂ z ∂ x 和 ∂ z ∂ y ∂ z ∂ x = f 1 ′ ⋅ ∂ u ∂ x + f 3 ′ ⋅ 1 ∂ z ∂ y = f 1 ′ ∂ u ∂ y + f 2 ′ ⋅ d v d y [ 注 ] u 是 二 元 → ∂ , v 是 一 元 → d 2. 设 z = f ( e x sin ⁡ y , x 2 + y 2 ) , 其 中 f 具 有 二 阶 连 续 偏 导 数 , 求 ∂ 2 z ∂ x ∂ y ∂ z ∂ x = f 1 ′ ⋅ e x sin ⁡ y + f 2 ′ ⋅ 2 x ∂ 2 z ∂ x ∂ y = ( f 11 ′ ′ ⋅ e x cos ⁡ y + f 12 ′ ′ ⋅ 2 y ) ⋅ e x sin ⁡ y + f 1 ′ ⋅ e x cos ⁡ y + 2 x ( f 21 ′ ′ ⋅ e x cos ⁡ y + f 22 ′ ′ ⋅ 2 y ) = e 2 x sin ⁡ y cos ⁡ y ⋅ f 11 ′ ′ + ( 2 y e x sin ⁡ y + 2 x e x cos ⁡ y ) ⋅ f 12 ′ ′ + e x cos ⁡ y f 1 ′ + 4 x y f 22 ′ ′ 3. 设 z = f ( u , v , x ) , u = x e y , 其 中 f 具 有 二 阶 连 续 偏 导 数 , 求 ∂ 2 z ∂ x ∂ y ∂ z ∂ x = f 1 ′ ⋅ e y + f 2 ′ ⋅ 1 ∂ 2 z ∂ x ∂ y = ( f 11 ′ ′ ⋅ x e y + f 13 ′ ′ ⋅ 1 ) ⋅ e y + f 1 ′ ⋅ e y + ( f 21 ′ ′ ⋅ x e y + f 23 ′ ′ ⋅ 1 ) 4. 设 z = f ( 2 x − y ) + g ( x , x y ) , 其 中 f 二 阶 可 导 , g 具 有 二 阶 连 续 偏 导 数 , 求 ∂ 2 z ∂ x ∂ y ∂ z ∂ x = f ′ ⋅ 2 + g 1 ′ ⋅ 1 + g 2 ′ ⋅ y ∂ 2 z ∂ x ∂ y = 2 f ′ ′ ⋅ ( − 1 ) + g 12 ′ ′ ⋅ x + g 22 ′ ′ ⋅ x ⋅ y + g 2 ′ ⋅ 1 \begin{aligned} 1.&amp;设z=f(u,v,x),u=u(x,y),v=v(y)都是可微函数,求\frac{\partial z}{\partial x}和\frac{\partial z}{\partial y}\\ &amp;\frac{\partial z}{\partial x}=f_1&#x27;\cdot\frac{\partial u}{\partial x}+f_3&#x27;\cdot1\\ &amp;\frac{\partial z}{\partial y}=f_1&#x27;\frac{\partial u}{\partial y}+f_2&#x27;\cdot\frac{dv}{dy}\\ &amp;\color{grey}[注]u是二元\to \partial,v是一元\to d\\ \color{black}2.&amp;设z=f(e^x\sin y,x^2+y^2),其中f具有二阶连续偏导数,求\frac{\partial^2 z}{\partial x\partial y}\\ &amp;\frac{\partial z}{\partial x}=f_1&#x27;\cdot e^x\sin y+f_2&#x27;\cdot2x\\ &amp;\frac{\partial^2z}{\partial x \partial y}=(f_{11}&#x27;&#x27;\cdot e^x\cos y+f_{12}&#x27;&#x27;\cdot2y)\cdot e^x\sin y+f_1&#x27;\cdot e^x\cos y+2x(f_{21}&#x27;&#x27;\cdot e^x\cos y+f_{22}&#x27;&#x27;\cdot2y)\\ &amp;=e^{2x}\sin y\cos y\cdot f_{11}&#x27;&#x27;+(2ye^x\sin y+2xe^x\cos y)\cdot f_{12}&#x27;&#x27;+e^x\cos y f_1&#x27;+4xyf_{22}&#x27;&#x27;\\ 3.&amp;设z=f(u,v,x),u=xe^y,其中f具有二阶连续偏导数,求\frac{\partial^2z}{\partial x\partial y}\\ &amp;\frac{\partial z}{\partial x}=f_1&#x27;\cdot e^y+f_2&#x27;\cdot1\\ &amp;\frac{\partial^2z}{\partial x \partial y}=(f_{11}&#x27;&#x27;\cdot xe^y+f_{13}&#x27;&#x27;\cdot1)\cdot e^y+f_1&#x27;\cdot e^y+(f_{21}&#x27;&#x27;\cdot xe^y+f_{23}&#x27;&#x27;\cdot1)\\ 4.&amp;设z=f(2x-y)+g(x,xy),其中f二阶可导,g具有二阶连续偏导数,求\frac{\partial^2z}{\partial x \partial y}\\ &amp;\frac{\partial z}{\partial x}=f&#x27;\cdot2+g_1&#x27;\cdot1+g_2&#x27;\cdot y\\ &amp;\frac{\partial^2z}{\partial x\partial y}=2f&#x27;&#x27;\cdot(-1)+g_{12}&#x27;&#x27;\cdot x+g_{22}&#x27;&#x27;\cdot x\cdot y+g_2&#x27;\cdot1\\ \end{aligned} 1.2.3.4.z=f(u,v,x),u=u(x,y),v=v(y)xzyzxz=f1xu+f31yz=f1yu+f2dydv[]u,vdz=f(exsiny,x2+y2),fxy2zxz=f1exsiny+f22xxy2z=(f11excosy+f122y)exsiny+f1excosy+2x(f21excosy+f222y)=e2xsinycosyf11+(2yexsiny+2xexcosy)f12+excosyf1+4xyf22z=f(u,v,x),u=xey,fxy2zxz=f1ey+f21xy2z=(f11xey+f131)ey+f1ey+(f21xey+f231)z=f(2xy)+g(x,xy),fgxy2zxz=f2+g11+g2yxy2z=2f(1)+g12x+g22xy+g21

隐函数的求导公式

一个二元方程确定的一元隐函数

设 F ( x , y ) 有 连 续 一 阶 偏 导 数 , 且 F y ′ ≠ 0 , 则 F ( x , y ) = 0 确 定 y = y ( x ) , 且 d y d x = − F x ′ F y ′ \begin{aligned} &amp;设F(x,y)有连续一阶偏导数,且F_y&#x27;\neq0,则F(x,y)=0确定y=y(x),且\frac{dy}{dx}=-\frac{F_x&#x27;}{F_y&#x27;} \end{aligned} F(x,y)Fy̸=0,F(x,y)=0y=y(x),dxdy=FyFx

一个三元方程确定的二元隐函数

设 F ( x , y , z ) 有 连 续 一 阶 偏 导 数 , 且 F z ′ ≠ 0 , 则 F ( x , y , z ) = 0 确 定 z = z ( x , y ) , 且 ∂ z ∂ x = − F x ′ F z ′ , ∂ z ∂ y = − F y ′ F z ′ \begin{aligned} &amp;设F(x,y,z)有连续一阶偏导数,且F_z&#x27;\neq0,则F(x,y,z)=0确定z=z(x,y),且\frac{\partial z}{\partial x}=-\frac{F_x&#x27;}{F_z&#x27;},\frac{\partial z}{\partial y}=-\frac{F_y&#x27;}{F_z&#x27;} \end{aligned} F(x,y,z)Fz̸=0,F(x,y,z)=0z=z(x,y),xz=FzFx,yz=FzFy

1. 设 z = z ( x , y ) 由 方 程 ln ⁡ z + e z − 1 = x y 确 定 , 则 ∂ z ∂ x ∣ ( 2 , 1 2 ) 方 法 一 . 由 ln ⁡ z + e z − 1 = x y &ThickSpace; ⟹ &ThickSpace; 1 z ⋅ z x ′ + e z − 1 ⋅ z x ′ = y 由 x = 2 , y = 1 2 , 代 入 前 者 , 则 z = 1 ; 代 入 后 者 , 则 z x ′ = 1 4 方 法 二 . 令 F ( x , y , z ) = ln ⁡ z + e z − 1 − x y = o &ThickSpace; ⟹ &ThickSpace; ∂ z ∂ x = − F x ′ F z ′ = − − y 1 z + e z − 1 ∣ ( 2 , 1 x , 1 ) = 1 4 2. 设 z = z ( x , y ) 由 方 程 F ( x + z y , y + z x ) = 0 确 定 , 其 中 F 由 连 续 偏 导 数 , 求 x ∂ z ∂ x + y ∂ z ∂ y F 1 ′ ⋅ ( 1 + 1 y ∂ z ∂ x ) + F 2 ′ ⋅ ∂ z ∂ x ⋅ x − z x 2 = 0 ( 对 x ) F 1 ′ ⋅ ∂ z ∂ y ⋅ y − z y 2 + F 2 ′ ⋅ ( 1 + 1 x ⋅ ∂ z ∂ y ) = 0 ( 对 y ) &ThickSpace; ⟹ &ThickSpace; x ⋅ ∂ z ∂ x + y ⋅ ∂ z ∂ y = z − x y 3. 设 { u = f ( x − u t , y − u t , z − u t ) g ( x , y , z ) , 求 ∂ u ∂ x , ∂ u ∂ y [ 分 析 ] 一 般 有 几 个 方 程 , 就 有 几 个 因 变 量 , 其 余 的 字 母 都 是 自 变 量 ∂ u ∂ x = f 1 ′ ⋅ ( 1 − ∂ u ∂ x t ) + f 2 ′ ⋅ ( − ∂ u ∂ x t ) + f 3 ′ ⋅ ( ∂ z ∂ x − ∂ u ∂ x t ) g 1 ′ ⋅ 1 + g 2 ′ ⋅ 0 + g 3 ′ ⋅ ∂ z ∂ x = 0 解 得 ∂ u ∂ x = f 1 ′ g 3 ′ − f 3 ′ g 1 ′ g 3 ′ [ 1 + t ( f 1 ′ + f 2 ′ + f 3 ′ ) ] 对 y 求 偏 导 数 同 样 可 得 ∂ u ∂ y = f 2 ′ g 3 ′ − f 3 ′ g 2 ′ g 3 ′ [ 1 + t ( f 1 ′ + f 2 ′ + f 3 ′ ) ] \begin{aligned} 1.&amp;设z=z(x,y)由方程\ln z+e^{z-1}=xy确定,则\frac{\partial z}{\partial x}|_{(2,\frac12)}\\ 方法一.&amp;由\ln z+e^{z-1}=xy\implies \frac1z\cdot z_x&#x27;+e^{z-1}\cdot z_x&#x27;=y\\ &amp;由x=2,y=\frac12,代入前者,则z=1;代入后者,则z_x&#x27;=\frac14\\ 方法二.&amp;令F(x,y,z)=\ln z+e^{z-1}-xy=o\\ &amp;\implies\frac{\partial z}{\partial x}=-\frac{F_x&#x27;}{F_z&#x27;}=-\frac{-y}{\frac1z+e^{z-1}}|_{(2,\frac1x,1)}=\frac14\\ 2.&amp;设z=z(x,y)由方程F(x+\frac zy,y+\frac zx)=0确定,其中F由连续偏导数,求x\frac{\partial z}{\partial x}+y\frac{\partial z}{\partial y}\\ &amp;F_1&#x27;\cdot(1+\frac1y\frac{\partial z}{\partial x})+F_2&#x27;\cdot\frac{\frac{\partial z}{\partial x}\cdot x-z}{x^2}=0(对x)\\ &amp;F_1&#x27;\cdot\frac{\frac{\partial z}{\partial y}\cdot y-z}{y^2}+F_2&#x27;\cdot(1+\frac1x\cdot\frac{\partial z}{\partial y})=0(对y)\\ &amp;\implies x\cdot\frac{\partial z}{\partial x}+y\cdot\frac{\partial z}{\partial y}=z-xy\\ 3.&amp;设\begin{cases}u=f(x-ut,y-ut,z-ut)\\g(x,y,z)\end{cases},求\frac{\partial u}{\partial x},\frac{\partial u}{\partial y}\\ &amp;[分析]一般有几个方程,就有几个因变量,其余的字母都是自变量\\ &amp;\frac{\partial u}{\partial x}=f_1&#x27;\cdot(1-\frac{\partial u}{\partial x}t)+f_2&#x27;\cdot(-\frac{\partial u}{\partial x}t)+f_3&#x27;\cdot(\frac{\partial z}{\partial x}-\frac{\partial u}{\partial x}t)\\ &amp;g_1&#x27;\cdot1+g_2&#x27;\cdot0+g_3&#x27;\cdot\frac{\partial z}{\partial x}=0\\ &amp;解得\frac{\partial u}{\partial x}=\frac{f_1&#x27;g_3&#x27;-f_3&#x27;g_1&#x27;}{g_3&#x27;[1+t(f_1&#x27;+f_2&#x27;+f_3&#x27;)]}\\ &amp;对y求偏导数同样可得\frac{\partial u}{\partial y}=\frac{f_2&#x27;g_3&#x27;-f_3&#x27;g_2&#x27;}{g_3&#x27;[1+t(f_1&#x27;+f_2&#x27;+f_3&#x27;)]}\\ \end{aligned} 1...2.3.z=z(x,y)lnz+ez1=xyxz(2,21)lnz+ez1=xyz1zx+ez1zx=yx=2,y=21,z=1;zx=41F(x,y,z)=lnz+ez1xy=oxz=FzFx=z1+ez1y(2,x1,1)=41z=z(x,y)F(x+yz,y+xz)=0Fxxz+yyzF1(1+y1xz)+F2x2xzxz=0(x)F1y2yzyz+F2(1+x1yz)=0(y)xxz+yyz=zxy{u=f(xut,yut,zut)g(x,y,z),xu,yu[]xu=f1(1xut)+f2(xut)+f3(xzxut)g11+g20+g3xz=0xu=g3[1+t(f1+f2+f3)]f1g3f3g1yyu=g3[1+t(f1+f2+f3)]f2g3f3g2

极值与最值

极值的定义

极值的必要条件

极值的充分条件

条件极值

1. 构 造 拉 格 朗 日 函 数 F ( x , y , λ ) = f ( x , y ) + λ φ ( x , y ) , 2. 令 { F x ′ = f x ′ ( x , y ) + λ φ x ′ ( x , y ) = 0 F y ′ = f y ′ ( x , y ) + λ φ y ′ ( x , y ) = 0 F λ ′ = φ ( x , y ) = 0 3. 比 较 上 述 各 函 数 值 的 大 小 , 最 大 的 为 最 大 值 , 最 小 的 为 最 小 值 \begin{aligned} 1.&amp;构造拉格朗日函数F(x,y,\lambda)=f(x,y)+\lambda\varphi(x,y),\\ 2.&amp;令\begin{cases}F_x&#x27;=f_x&#x27;(x,y)+\lambda\varphi_x&#x27;(x,y)=0\\F_y&#x27;=f_y&#x27;(x,y)+\lambda\varphi_y&#x27;(x,y)=0\\F_\lambda&#x27;=\varphi(x,y)=0\end{cases}\\ 3.&amp;比较上述各函数值的大小,最大的为最大值,最小的为最小值\\ \end{aligned} 1.2.3.F(x,y,λ)=f(x,y)+λφ(x,y),Fx=fx(x,y)+λφx(x,y)=0Fy=fy(x,y)+λφy(x,y)=0Fλ=φ(x,y)=0

求闭区域上的最值

1. 设 z = z ( x , y ) 由 方 程 ( x 2 + y 2 ) z + ln ⁡ z + 2 ( x + y + 1 ) = 0 确 定 , 求 z = z ( x , y ) 的 极 值 由 方 程 得 2 x z + ( x 2 + y 2 ) z x ′ + 1 z z x ′ + 2 = 0 &ThickSpace; ⟹ &ThickSpace; 2 y z + ( x 2 + y 2 ) z y ′ + 1 z z y ′ + 2 = 0 令 z x ′ = 0 , z y ′ = 0 , 则 x = y = − 1 z 代 入 第 一 个 式 子 得 : 2 z + ln ⁡ z − 4 z + 2 = 0 &ThickSpace; ⟹ &ThickSpace; z = 1 ∴ x = y = − 1 , z = 1 &ThickSpace; ⟹ &ThickSpace; 2 z + 2 x z x ′ + 2 x z x ′ + ( x 2 + y 2 ) z x x ′ ′ + z x x ′ ′ ⋅ z − z x ′ 2 z 2 = 0 &ThickSpace; ⟹ &ThickSpace; 2 x z y ′ + 2 y z x ′ + ( x 2 + y 2 ) z x y ′ ′ + z x y ′ ′ ⋅ z − z x ′ ⋅ z y ′ z 2 = 0 A = z x x ′ ′ ( − 1 , − 1 ) = − 2 3 = c ( 对 称 性 ) B = z x y ′ ′ ( − 1 , − 1 ) = 0 , 由 B 2 − A C &lt; 0 且 A &lt; 0 故 z ( − 1 , − 1 ) = 1 极 大 值 2. 求 函 数 u = x 2 + y 2 + z 2 在 条 件 z = x 2 + y 2 及 x + y + z = 4 下 的 最 大 值 与 最 小 值 令 F ( x , y , z , λ , μ ) = x 2 + y 2 + z 2 + λ ( x 2 + y 2 − z ) + μ ( x + y + z − 4 ) 得 { F x ′ = 2 x + 2 λ x + μ = 0 F y ′ = 2 y + 2 x y + μ = 0 F z ′ = 2 z − λ + μ = 0 F λ ′ = x 2 + y 2 − z = 0 F μ ′ = x + y + z − 4 = 0 解 得 : P 1 ( 1 , 1 , 2 ) , P 2 ( − 2 , − 2 , 8 ) 由 u ( P 1 ) = 6 为 最 小 值 , 且 u ( P 2 ) = 72 为 最 大 值 3. 求 u = x 2 + y 2 + z 2 在 ( x − y ) 2 − z 2 = 1 条 件 下 的 最 小 值 令 F ( x , y , z , λ ) = x 2 + y 2 + z 2 + λ ( ( x − y ) 2 − z 2 − 1 ) { F x ′ = 2 x + 2 λ ( x − y ) = 0 F y ′ = 2 y − 2 λ ( x − y ) = 0 F z ′ = 2 z − 2 λ z = 0 F λ ′ = ( x − y ) 2 − z 2 − 1 = 0 解 得 : P 1 ( − 1 2 , 1 2 , 0 ) , P 2 ( 1 2 , − 1 2 , 0 ) 由 u ( P 1 ) = u ( P 2 ) = 2 2 4. 求 f ( x , y ) = x 2 − y 2 + 2 在 椭 圆 域 D : x 2 + y 2 4 ≤ 1 上 的 最 大 值 与 最 小 值 内 部 → f ( x , y ) , 由 f x ′ = 2 x = 0 , f y ′ = − 2 y = 0 边 界 → F ( x , y , λ ) F ( x , y , λ ) = x 2 − y 2 + λ ( x 2 + y 2 4 − 1 ) 由 F x ′ = 2 x + 2 λ x = 0 , F y ′ = − 2 y + λ 2 y = 0 F x ′ = x 2 + y 2 4 − 1 = 0 f ( 0 , 0 ) = 2 , f ( + − 1 , 0 = 3 ) 最 大 , f ( 0 , + − 2 ) = − 2 最 小 5. 求 f ( x , y ) = x + x y − x 2 − y 2 在 闭 区 域 D : 0 ≤ x ≤ 1 , 0 ≤ y ≤ 2 上 得 最 大 值 与 最 小 值 内 部 → f ( x , y ) , 由 f x ′ = 1 + y − 2 x = 0 , f y ′ = x − 2 y = 0 边 界 ( 代 入 法 ) L 1 : y = 0 ( 0 ≤ x ≤ 1 ) &ThickSpace; ⟹ &ThickSpace; f ( x , 0 ) = x − x 2 = φ ( x ) &ThickSpace; ⟹ &ThickSpace; ( 1 2 , 0 ) , ( 0 , 0 ) , ( 1 , 0 ) L 2 : x = 1 ( 0 &lt; y &lt; 2 ) &ThickSpace; ⟹ &ThickSpace; f ( 1 , y ) = y − y 2 &ThickSpace; ⟹ &ThickSpace; ( 1 , 1 2 ) L 3 : y = 2 ( 0 ≤ x ≤ 1 ) &ThickSpace; ⟹ &ThickSpace; f ( x , 2 ) = 3 x − x 2 − 4 &ThickSpace; ⟹ &ThickSpace; ( 0 , 2 ) , ( 1 , 2 ) L 4 : x = 0 ( 0 &lt; y &lt; 2 ) &ThickSpace; ⟹ &ThickSpace; f ( 0 , y ) = − y 2 比 较 得 最 大 值 为 1 3 , 最 小 值 为 − 4 \begin{aligned} 1.&amp;设z=z(x,y)由方程(x^2+y^2)z+\ln z+2(x+y+1)=0确定,求z=z(x,y)的极值\\ &amp;由方程得2xz+(x^2+y^2)z_x&#x27;+\frac1zz_x&#x27;+2=0\\ &amp;\implies2yz+(x^2+y^2)z_y&#x27;+\frac1zz_y&#x27;+2=0\\ &amp;令z_x&#x27;=0,z_y&#x27;=0,则x=y=-\frac1z代入第一个式子\\ &amp;得:\frac2z+\ln z-\frac4z+2=0\implies z=1\\ &amp;\therefore x=y=-1,z=1\\ &amp;\implies 2z+2xz_x&#x27;+2xz_x&#x27;+(x^2+y^2)z_{xx}&#x27;&#x27;+\frac{z_{xx}&#x27;&#x27;\cdot z-z_x&#x27;^2}{z^2}=0\\ &amp;\implies 2xz_y&#x27;+2yz_x&#x27;+(x^2+y^2)z_{xy}&#x27;&#x27;+\frac{z_{xy}&#x27;&#x27;\cdot z-z_x&#x27;\cdot z_y&#x27;}{z^2}=0\\ &amp;A=z_{xx}&#x27;&#x27;(-1,-1)=-\frac23=c(对称性)\\ &amp;B=z_{xy}&#x27;&#x27;(-1,-1)=0,由B^2-AC&lt;0且A&lt;0\\ &amp;故z(-1,-1)=1极大值\\ 2.&amp;求函数u=x^2+y^2+z^2在条件z=x^2+y^2及x+y+z=4下的最大值与最小值\\ &amp;令F(x,y,z,\lambda,\mu)=x^2+y^2+z^2+\lambda(x^2+y^2-z)+\mu(x+y+z-4)\\ 得&amp;\begin{cases}F_x&#x27;=2x+2\lambda x+\mu=0\\ F_y&#x27;=2y+2xy+\mu=0\\ F_z&#x27;=2z-\lambda+\mu=0\\ F_\lambda&#x27;=x^2+y^2-z=0\\ F_\mu&#x27;=x+y+z-4=0\end{cases}解得:P_1(1,1,2),P_2(-2,-2,8)\\ &amp;由u(P_1)=6为最小值,且u(P_2)=72为最大值\\ 3.&amp;求u=\sqrt{x^2+y^2+z^2}在(x-y)^2-z^2=1条件下的最小值\\ &amp;令F(x,y,z,\lambda)=x^2+y^2+z^2+\lambda((x-y)^2-z^2-1)\\ &amp;\begin{cases}F_x&#x27;=2x+2\lambda(x-y)=0\\ F_y&#x27;=2y-2\lambda(x-y)=0\\ F_z&#x27;=2z-2\lambda z=0\\ F_\lambda&#x27;=(x-y)^2-z^2-1=0\end{cases}解得:P_1(-\frac12,\frac12,0),P_2(\frac12,-\frac12,0)\\ &amp;由u(P_1)=u(P_2)=\frac{\sqrt{2}}2\\ 4.&amp;求f(x,y)=x^2-y^2+2在椭圆域D:x^2+\frac{y^2}4\leq1上的最大值与最小值\\ &amp;内部\to f(x,y),由f_x&#x27;=2x=0,f_y&#x27;=-2y=0\\ &amp;边界\to F(x,y,\lambda)\\ &amp;F(x,y,\lambda)=x^2-y^2+\lambda(x^2+\frac{y^2}4-1)\\ &amp;由F_x&#x27;=2x+2\lambda x=0,F_y&#x27;=-2y+\frac{\lambda}2y=0\\ &amp;F_x&#x27;=x^2+\frac{y^2}4-1=0\\ &amp;f(0,0)=2,f(+-1,0=3)最大,f(0,+-2)=-2最小\\ 5.&amp;求f(x,y)=x+xy-x^2-y^2在闭区域D:0\leq x\leq1,0\leq y\leq2上得最大值与最小值\\ &amp;内部\to f(x,y),由f_x&#x27;=1+y-2x=0,f_y&#x27;=x-2y=0\\ &amp;边界(代入法)L_1:y=0(0\leq x\leq1)\implies f(x,0)=x-x^2=\varphi(x)\implies (\frac12,0),(0,0),(1,0)\\ &amp;L_2:x=1(0&lt;y&lt;2) \implies f(1,y)=y-y^2\implies (1,\frac12)\\ &amp;L_3:y=2(0\leq x\leq1)\implies f(x,2)=3x-x^2-4\implies (0,2),(1,2)\\ &amp;L_4:x=0(0&lt;y&lt;2) \implies f(0,y)=-y^2\\ &amp;比较得最大值为\frac13,最小值为-4 \end{aligned} 1.2.3.4.5.z=z(x,y)(x2+y2)z+lnz+2(x+y+1)=0z=z(x,y)2xz+(x2+y2)zx+z1zx+2=02yz+(x2+y2)zy+z1zy+2=0zx=0,zy=0,x=y=z1z2+lnzz4+2=0z=1x=y=1,z=12z+2xzx+2xzx+(x2+y2)zxx+z2zxxzzx2=02xzy+2yzx+(x2+y2)zxy+z2zxyzzxzy=0A=zxx(1,1)=32=c()B=zxy(1,1)=0,B2AC<0A<0z(1,1)=1u=x2+y2+z2z=x2+y2x+y+z=4F(x,y,z,λ,μ)=x2+y2+z2+λ(x2+y2z)+μ(x+y+z4)Fx=2x+2λx+μ=0Fy=2y+2xy+μ=0Fz=2zλ+μ=0Fλ=x2+y2z=0Fμ=x+y+z4=0P1(1,1,2),P2(2,2,8)u(P1)=6,u(P2)=72u=x2+y2+z2 (xy)2z2=1F(x,y,z,λ)=x2+y2+z2+λ((xy)2z21)Fx=2x+2λ(xy)=0Fy=2y2λ(xy)=0Fz=2z2λz=0Fλ=(xy)2z21=0P1(21,21,0),P2(21,21,0)u(P1)=u(P2)=22 f(x,y)=x2y2+2D:x2+4y21f(x,y),fx=2x=0,fy=2y=0F(x,y,λ)F(x,y,λ)=x2y2+λ(x2+4y21)Fx=2x+2λx=0,Fy=2y+2λy=0Fx=x2+4y21=0f(0,0)=2,f(+1,0=3),f(0,+2)=2f(x,y)=x+xyx2y2D:0x1,0y2f(x,y),fx=1+y2x=0,fy=x2y=0()L1:y=0(0x1)f(x,0)=xx2=φ(x)(21,0),(0,0),(1,0)L2:x=1(0<y<2)f(1,y)=yy2(1,21)L3:y=2(0x1)f(x,2)=3xx24(0,2),(1,2)L4:x=0(0<y<2)f(0,y)=y2314

二重积分

二重积分的定义、几何意义及性质

二重积分的定义

[ 定 义 ] ∬ D f ( x , y ) d σ = lim ⁡ d → 0 ∑ i = 1 n f ( ξ i , η i ) Δ σ i , 其 中 d = m a x i { d i } , d i 为 小 区 域 Δ σ i 的 直 径 , Δ σ i 为 第 i 个 小 闭 区 域 , 同 时 也 表 示 Δ σ i 的 面 积 。 \begin{aligned} [定义]&amp;\iint_Df(x,y)d\sigma=\lim_{d\to0}\sum_{i=1}^nf(\xi_i,\eta_i)\Delta\sigma_i,其中d=max_i\{d_i\},d_i为小区域\Delta\sigma_i的直径,\\ &amp;\Delta\sigma_i为第i个小闭区域,同时也表示\Delta\sigma_i的面积。 \end{aligned} []Df(x,y)dσ=d0limi=1nf(ξi,ηi)Δσi,d=maxi{di},diΔσiΔσiiΔσi

二重积分的几何意义

当 z = f ( x , y ) ≥ 0 时 , 二 重 积 分 ∬ D f ( x , y ) d σ 表 示 以 区 域 D 为 底 , 曲 面 z = f ( x , y ) 为 顶 , 侧 面 是 以 D 的 边 界 为 准 线 , 母 线 平 行 于 z 轴 的 柱 面 的 曲 顶 柱 体 的 体 积 \begin{aligned} &amp;当z=f(x,y)\geq0时,二重积分\iint_Df(x,y)d\sigma表示以区域D为底,曲面z=f(x,y)为顶,\\ &amp;侧面是以D的边界为准线,母线平行于z轴的柱面的曲顶柱体的体积\\ \end{aligned} z=f(x,y)0Df(x,y)dσDz=f(x,y),D线线z

二重积分的性质

1. 等 式 性 质 ( 1 ) ∬ D 1 d σ = A D , 其 中 A D 表 示 区 域 D 的 面 积 ( 2 ) ∬ D [ k 1 f ( x , y ) ± k 2 g ( x , y ) ] d σ = k 1 ∬ D f ( x , y ) d σ ± k 2 ∬ D g ( x , y ) d σ ( 3 ) ∬ D f ( x , y ) d σ = ∬ D 1 f ( x , y ) d σ + ∬ D 2 f ( x , y ) d σ , D 1 ⋃ D 2 = D , D 1 ⋂ D 2 = Φ 2. 不 等 式 性 质 ( 1 ) 在 D 上 , 若 f ( x , y ) ≤ g ( x , y ) , 则 ∬ D f ( x , y ) d σ ≤ ∬ D g ( x , y ) d σ ( 2 ) ∣ ∬ D f ( x , y ) d σ ∣ ≤ ∬ D ∣ f ( x , y ) ∣ d σ ( 3 ) 在 D 上 , 若 m ≤ f ( x , y ) ≤ M , 则 m ⋅ A D ≤ ∬ D f ( x , y ) d σ ≤ M ⋅ A D , 其 中 A D 表 示 D 的 面 积 3. 中 值 定 理 设 f ( x , y ) 在 D 上 连 续 , 则 存 在 一 点 ( ξ , η ) ∈ D , 使 ∬ D f ( x , y ) d σ = f ( ξ , η ) , ⋅ A D \begin{aligned} 1.&amp;\color{red}等式性质\\ (1)&amp;\iint_D1d\sigma=A_D,其中A_D表示区域D的面积\\ (2)&amp;\iint_D[k_1f(x,y)\pm k_2g(x,y)]d\sigma=k_1\iint_Df(x,y)d\sigma\pm k_2\iint_D g(x,y)d\sigma\\ (3)&amp;\iint_Df(x,y)d\sigma=\iint_{D_1}f(x,y)d\sigma+\iint_{D_2}f(x,y)d\sigma,D_1\bigcup D_2=D,D_1\bigcap D_2=\Phi\\ 2.&amp;\color{red}不等式性质\\ (1)&amp;在D上,若f(x,y)\leq g(x,y),则\iint_Df(x,y)d\sigma\leq\iint_{D}g(x,y)d\sigma\\ (2)&amp;\mid\iint_Df(x,y)d\sigma\mid\leq\iint_D\mid f(x,y)\mid d\sigma\\ (3)&amp;在D上,若m\leq f(x,y)\leq M,则m\cdot A_D\leq \iint_D f(x,y)d\sigma\leq M\cdot A_D,其中A_D表示D的面积\\ 3.&amp;\color{red}中值定理\\ &amp;设f(x,y)在D上连续,则存在一点(\xi,\eta)\in D,使\iint_Df(x,y)d\sigma=f(\xi,\eta),\cdot A_D\\ \end{aligned} 1.(1)(2)(3)2.(1)(2)(3)3.D1dσ=AD,ADDD[k1f(x,y)±k2g(x,y)]dσ=k1Df(x,y)dσ±k2Dg(x,y)dσDf(x,y)dσ=D1f(x,y)dσ+D2f(x,y)dσ,D1D2=D,D1D2=ΦDf(x,y)g(x,y),Df(x,y)dσDg(x,y)dσDf(x,y)dσDf(x,y)dσDmf(x,y)M,mADDf(x,y)dσMAD,ADDf(x,y)D(ξ,η)D,使Df(x,y)dσ=f(ξ,η),AD

二重积分的计算

利用直角坐标

先y后x

若 D 是 X 型 积 分 区 域 , 即 D : a ≤ x ≤ b , φ 1 ( x ) ≤ y ≤ φ 2 ( x ) 则 ∬ D f ( x , y ) d σ = ∫ a b d x ∫ φ 1 ( x ) φ 2 ( x ) f ( x , y ) d y \begin{aligned} &amp;若D是X型积分区域,即D:a\leq x\leq b,\varphi_1(x)\leq y\leq \varphi_2(x)\\ &amp;则\iint_Df(x,y)d\sigma=\int_a^bdx\int_{\varphi_1(x)}^{\varphi_2(x)}f(x,y)dy\\ \end{aligned} DXD:axb,φ1(x)yφ2(x)Df(x,y)dσ=abdxφ1(x)φ2(x)f(x,y)dy

先x后y

若 D 是 Y 型 积 分 区 域 , 即 D : c ≤ x ≤ d , ϕ 1 ( y ) ≤ x ≤ ϕ 2 ( y ) 则 ∬ D f ( x , y ) d σ = ∫ c d d x ∫ ϕ 1 ( y ) ϕ 2 ( y ) f ( x , y ) d x \begin{aligned} &amp;若D是Y型积分区域,即D:c\leq x\leq d,\phi_1(y)\leq x\leq \phi_2(y)\\ &amp;则\iint_Df(x,y)d\sigma=\int_c^ddx\int_{\phi_1(y)}^{\phi_2(y)}f(x,y)dx\\ \end{aligned} DYD:cxd,ϕ1(y)xϕ2(y)Df(x,y)dσ=cddxϕ1(y)ϕ2(y)f(x,y)dx

  [ 例 1 ] 将 ∬ D f ( x , y ) d σ 化 成 直 角 坐 标 下 的 累 次 积 分 其 中 D : x 2 + y 2 ≤ 2 a x , x 2 + y 2 ≤ 2 a y ( a &gt; 0 ) 1. ∫ 0 a d x ∫ a − a 2 − x 2 2 a x − x 2 f ( x , y ) d y 2. ∫ 0 a d y ∫ a − a 2 − y 2 2 a y − y 2 f ( x , y ) d x [ 例 2 ] 交 换 积 分 次 序 ∫ 0 1 d y ∫ y 2 − y 2 f ( x , y ) d x = ‾ ∫ 0 2 d x ∫ 0 x 2 f ( x , y ) d y + ∫ 1 2 d x ∫ 0 2 − x 2 f ( x , y ) d y ( 由 限 定 图 , 由 图 定 限 ) [ 例 3 ] 交 换 积 分 次 序 ∫ π / 2 π d x ∫ sin ⁡ x 1 f ( x , y ) d y = ‾ ∫ 0 1 d y ∫ π − arcsin ⁡ y π f ( x , y ) d y \begin{aligned} \ [例1]&amp;\color{maroon}将\iint_Df(x,y)d\sigma化成直角坐标下的累次积分\\ &amp;\color{maroon}其中D:x^2+y^2\leq 2ax,x^2+y^2\leq 2ay(a&gt;0)\\ &amp;1.\int_0^adx\int_{a-\sqrt{a^2-x^2}}^{\sqrt{2ax-x^2}}f(x,y)dy\\ &amp;2.\int_0^ady\int_{a-\sqrt{a^2-y^2}}^{\sqrt{2ay-y^2}}f(x,y)dx\\ [例2]&amp;\color{maroon}交换积分次序\int_0^1dy\int_{\sqrt y}^{\sqrt{2-y^2}}f(x,y)dx=\underline{\quad}\\ &amp;\int_0^{\sqrt{2}}dx\int_0^{x^2}f(x,y)dy+\int_1^{\sqrt2}dx\int_0^{\sqrt{2-x^2}}f(x,y)dy(由限定图,由图定限)\\ [例3]&amp;\color{maroon}交换积分次序\int_{\pi/2}^{\pi}dx\int_{\sin x}^1f(x,y)dy=\underline{\quad}\\ &amp;\int_0^1dy\int_{\pi-\arcsin y}^\pi f(x,y)dy \end{aligned}  [1][2][3]Df(x,y)dσD:x2+y22ax,x2+y22ay(a>0)1.0adxaa2x2 2axx2 f(x,y)dy2.0adyaa2y2 2ayy2 f(x,y)dx01dyy 2y2 f(x,y)dx=02 dx0x2f(x,y)dy+12 dx02x2 f(x,y)dy()π/2πdxsinx1f(x,y)dy=01dyπarcsinyπf(x,y)dy

利用极坐标

首 先 , 在 极 坐 标 下 有 x = r cos ⁡ θ , y = r sin ⁡ θ , d σ = r d r d θ 若 D : α ≤ θ ≤ β , r 1 ( θ ) ≤ r ≤ r 2 ( θ ) , 则 ∬ D f ( x , y ) d σ = ∫ α β d θ ∫ r 1 ( θ ) r 2 ( θ ) f ( r cos ⁡ θ , r sin ⁡ θ ) r d r [ 注 ] 被 积 函 数 形 如 f ( x 2 + y 2 ) 或 f ( y x ) 或 f ( x y ) , 积 分 区 域 为 圆 域 , 考 虑 极 坐 标 比 较 方 便 [ 例 1 ] 将 ∬ D f ( x , y ) d σ 化 成 极 坐 标 下 的 累 次 积 分 其 中 D : x 2 + y 2 ≤ 2 a x , x 2 + y 2 ≤ 2 a y ( a &gt; 0 ) ∫ 0 π / 4 d θ ∫ 0 2 a sin ⁡ θ f ( r cos ⁡ θ , r sin ⁡ θ ) r d r + ∫ π / 4 π / 2 d θ ∫ 0 2 a cos ⁡ θ f ( r cos ⁡ θ , r sin ⁡ θ ) r d r [ 例 2 ] 累 次 积 分 ∫ 0 π / 2 d θ ∫ 0 cos ⁡ θ f ( r cos ⁡ θ , r sin ⁡ θ ) r d r = ‾ ∫ 0 1 d x ∫ 0 x − x 2 f ( x , y ) d y [ 例 3 ] 累 次 积 分 ∫ 0 π / 4 d θ ∫ 0 1 f ( r cos ⁡ θ , r sin ⁡ θ ) r d r = ‾ ∫ 0 2 / 2 d y ∫ y 1 − y 2 f ( x , y ) d x [ 例 4 ] 累 次 积 分 ∫ 0 2 d y ∫ − y 2 y − y 2 f ( x , y ) d x 改 成 极 坐 标 下 先 r 后 θ 为 ‾ I = ∫ 0 π / 2 d θ ∫ 0 2 sin ⁡ θ f ( r cos ⁡ θ , r sin ⁡ θ ) r d r + ∫ π / 2 3 π / 4 d θ ∫ 0 2 / sin ⁡ θ f ( r cos ⁡ θ , r sin ⁡ θ ) r d r \begin{aligned} &amp;首先,在极坐标下有x=r\cos\theta,y=r\sin\theta,d\sigma=rdrd\theta\\ &amp;若D:\alpha\leq\theta\leq\beta,r_1(\theta)\leq r\leq r_2(\theta),则\iint_Df(x,y)d\sigma=\int_\alpha^\beta d\theta\int_{r_1(\theta)}^{r_2(\theta)}f(r\cos\theta,r\sin\theta)rdr\\ [注]&amp;被积函数形如f(x^2+y^2)或f(\frac yx)或f(\frac xy),积分区域为圆域,考虑极坐标比较方便\\ [例1]&amp;\color{maroon}将\iint_Df(x,y)d\sigma化成极坐标下的累次积分\\ &amp;\color{maroon}其中D:x^2+y^2\leq 2ax,x^2+y^2\leq 2ay(a&gt;0)\\ &amp;\int_0^{\pi/4}d\theta\int_0^{2a\sin\theta}f(r\cos\theta,r\sin\theta)rdr+\int_{\pi/4}^{\pi/2}d\theta\int_0^{2a\cos\theta}f(r\cos\theta,r\sin\theta)rdr\\ [例2]&amp;\color{maroon}累次积分\int_0^{\pi/2}d\theta\int_0^{\cos\theta}f(r\cos\theta,r\sin\theta)rdr=\underline{\quad}\\ &amp;\int_0^1dx\int_0^{\sqrt{x-x^2}}f(x,y)dy\\ [例3]&amp;\color{maroon}累次积分\int_0^{\pi/4}d\theta\int_0^1f(r\cos\theta,r\sin\theta)rdr=\underline{\quad}\\ &amp;\int_0^{\sqrt2/2}dy\int_y^{\sqrt{1-y^2}}f(x,y)dx\\ [例4]&amp;\color{maroon}累次积分\int_0^2dy\int_{-y}^{\sqrt{2y-y^2}}f(x,y)dx改成极坐标下先r后\theta为\underline{\quad}\\ &amp;I=\int_0^{\pi/2}d\theta\int_0^{2\sin\theta}f(r\cos\theta,r\sin\theta)rdr+\int_{\pi/2}^{3\pi/4}d\theta\int_0^{2/\sin\theta}f(r\cos\theta,r\sin\theta)rdr\\ \end{aligned} [][1][2][3][4]x=rcosθ,y=rsinθ,dσ=rdrdθD:αθβ,r1(θ)rr2(θ),Df(x,y)dσ=αβdθr1(θ)r2(θ)f(rcosθ,rsinθ)rdrf(x2+y2)f(xy)f(yx),便Df(x,y)dσD:x2+y22ax,x2+y22ay(a>0)0π/4dθ02asinθf(rcosθ,rsinθ)rdr+π/4π/2dθ02acosθf(rcosθ,rsinθ)rdr0π/2dθ0cosθf(rcosθ,rsinθ)rdr=01dx0xx2 f(x,y)dy0π/4dθ01f(rcosθ,rsinθ)rdr=02 /2dyy1y2 f(x,y)dx02dyy2yy2 f(x,y)dxrθI=0π/2dθ02sinθf(rcosθ,rsinθ)rdr+π/23π/4dθ02/sinθf(rcosθ,rsinθ)rdr

利用对称性

普通对称性

设 D 关 于 y 轴 对 称 , D 1 是 D 在 x ≥ 0 的 部 分 , 则 ∬ D f ( x , y ) d x d y = { 2 ∬ D 1 f ( x , y ) d x d y , f ( x , y ) 对 x 是 偶 函 数 0 , f ( x , y ) 对 x 是 奇 函 数 设 D 关 于 x 轴 对 称 , D 1 是 D 在 y ≥ 0 的 部 分 , 则 ∬ D f ( x , y ) d x d y = { 2 ∬ D 1 f ( x , y ) d x d y , f ( x , y ) 对 y 是 偶 函 数 0 , f ( x , y ) 对 y 是 奇 函 数 \begin{aligned} &amp;设D关于y轴对称,D_1是D在x\geq0的部分,则\iint_Df(x,y)dxdy=\begin{cases}2\iint_{D_1}f(x,y)dxdy,f(x,y)对x是偶函数\\0,f(x,y)对x是奇函数\end{cases}\\ &amp;设D关于x轴对称,D_1是D在y\geq0的部分,则\iint_Df(x,y)dxdy=\begin{cases}2\iint_{D_1}f(x,y)dxdy,f(x,y)对y是偶函数\\0,f(x,y)对y是奇函数\end{cases}\\ \end{aligned} DyD1Dx0Df(x,y)dxdy={2D1f(x,y)dxdy,f(x,y)x0,f(x,y)xDxD1Dy0Df(x,y)dxdy={2D1f(x,y)dxdy,f(x,y)y0,f(x,y)y

轮换对称性

若 D 关 于 直 线 y = x 对 称 , 则 ∬ D f ( x , y ) d x d y = ∬ D f ( y , x ) d x d y \begin{aligned} &amp;若D关于直线y=x对称,则\iint_{D}f(x,y)dxdy=\iint_Df(y,x)dxdy \end{aligned} D线y=xDf(x,y)dxdy=Df(y,x)dxdy

[ 例 1 ] 设 D : 0 ≤ x ≤ a , 0 ≤ y ≤ a , 则 ∬ D e x e x + e y d x d y = ‾ ∬ D e x e x + e y d x d y = ∬ e y e y + e x d y d x = 1 2 ∬ D ( e x e x + e y + e y e y + e x ) d x d y = 1 2 ∬ D 1 d x d y = 1 2 a 2 \begin{aligned} [例1]&amp;\color{maroon}设D:0\leq x\leq a,0\leq y\leq a,则\iint_D\frac{e^x}{e^x+e^y}dxdy=\underline{\quad}\\ &amp;\iint_D\frac{e^x}{e^x+e^y}dxdy=\iint\frac{e^y}{e^y+e^x}dydx\\ &amp;=\frac12\iint_D(\frac{e^x}{e^x+e^y}+\frac{e^y}{e^y+e^x})dxdy\\ &amp;=\frac12\iint_D1dxdy=\frac12a^2\\ \end{aligned} [1]D:0xa,0ya,Dex+eyexdxdy=Dex+eyexdxdy=ey+exeydydx=21D(ex+eyex+ey+exey)dxdy=21D1dxdy=21a2

  [ 例 1 ] 计 算 累 次 积 分 : ( 1 ) ∫ 0 2 d x ∫ x 2 e − y 2 d y = ‾ ; ( 2 ) ∫ 0 1 d x ∫ 1 − x 1 − x 2 x + y x 2 + y 2 d y = ‾ 1. I = ∫ 0 2 d y ∫ 0 y e − y 2 d x = ∫ 0 2 e − y 2 ⋅ y d y = − 1 2 e − y 2 ∣ 0 2 = − 1 2 ( e − 4 − 1 ) 2. I = ∫ 0 π / 2 d θ ∫ 1 / ( cos ⁡ θ + sin ⁡ θ ) 1 r cos ⁡ θ + r sin ⁡ θ r 2 ⋅ r d r = ∫ 0 π / 2 ( cos ⁡ θ + sin ⁡ θ ) ⋅ ( 1 − 1 cos ⁡ θ + sin ⁡ θ ) d θ = ∫ 0 π / 2 ( cos ⁡ θ + sin ⁡ θ − 1 ) d θ = 2 − π 2 [ 例 2 ] 计 算 二 重 积 分 ∬ D y 2 − x y d x d y , 其 中 D 由 y = x , y = 1 及 x = 0 围 成 I = ∫ 0 1 d y ∫ 0 y y y − x d x = ∫ 0 1 y ( − 2 3 ( y − x ) 3 2 ) ∣ x = 0 x = y d y = 2 3 ∣ 0 1 y ⋅ y 3 2 d y = 2 3 ⋅ 1 3 y 3 ∣ 0 1 = 2 9 [ 例 3 ] 计 算 二 重 积 分 ∬ D x d x d y , 其 中 D : x 2 + y 2 ≤ x , y ≥ 0 I = ∫ 0 π / 2 d θ ∫ 0 cos ⁡ θ r cos ⁡ θ ⋅ r d r = ∫ 0 π / 2 cos ⁡ θ ⋅ 2 5 r 5 2 ∣ r = 0 r = cos ⁡ θ d θ = 2 5 ∫ 0 π / 2 cos ⁡ 3 θ d θ = 2 5 ⋅ 2 3 = 4 15 [ 例 4 ] 计 算 二 重 积 分 ∬ D 1 + x y 1 + x 2 + y 2 d σ , 其 中 D : x 2 + y 2 ≤ 1 , x ≥ 0 I = ∬ D 1 1 + x 2 + y 2 d x d y + ∬ D x y 1 + x 2 + y 2 d x d y = 2 ∬ D 1 1 1 + x 2 + y 2 d x d y + 0 = 2 ∫ 0 π / 2 d θ ∫ 0 1 1 a + r 2 r d r = π ⋅ 1 2 ln ⁡ 2 [ 例 5 ] 计 算 二 重 积 分 ∬ D x sin ⁡ ( π x 2 + y 2 ) x + y d x d y , 其 中 D : 1 ≤ x 2 + y 2 ≤ 4 , x ≥ 0 , y ≥ 0 I = ∬ D x sin ⁡ ( π x 2 + y 2 ) x + y d x d y = ∬ D y sin ⁡ ( π y 2 + x 2 ) y + x d y d x = 1 2 ∬ D sin ⁡ ( π x 2 + y 2 ) d x d y = 1 2 ∫ 0 π / 2 d θ ∫ 1 2 sin ⁡ ( π r ) ⋅ r d r = π 4 ∫ 1 2 sin ⁡ ( π r ) ⋅ r d r = π 4 [ 例 6 ] 计 算 二 重 积 分 ∬ D ∣ x 2 + y 2 − 1 ∣ d σ , 其 中 D : 0 ≤ x ≤ 1 , 0 ≤ y ≤ 1 I = ∬ D 1 ( 1 − x 2 − y 2 ) d x d y + ∬ D 2 ( x 2 + y 2 − 1 ) d x d y = ∬ D 1 ( 1 − x 2 − y 2 ) d x d y + ∬ D − D 1 ( x 2 + y 2 − 1 ) d x d y = 2 ∬ D 1 ( 1 − x 2 − y 2 ) d x d y + ∬ D ( x 2 + y 2 − 1 ) d x d y = 2 ∫ 0 π / 2 d θ ∫ 0 1 ( 1 − r 2 ) r d r + ∫ 0 1 d x ∫ 0 1 ( x 2 + y 2 − 1 ) d y \begin{aligned} \ [例1]&amp;\color{maroon}计算累次积分:(1)\int_0^2dx\int_x^2e^{-y^2}dy=\underline{\quad};(2)\int_0^1dx\int_{1-x}^{\sqrt{1-x^2}}\frac{x+y}{x^2+y^2}dy=\underline{\quad}\\ 1.&amp;I=\int_0^2dy\int_0^ye^{-y^2}dx=\int_0^2e^{-y^2}\cdot ydy=-\frac12e^{-y^2}|_0^2=-\frac12(e^{-4}-1)\\ 2.&amp;I=\int_0^{\pi/2}d\theta\int_{1/(\cos\theta+\sin\theta)}^1\frac{r\cos\theta+r\sin\theta}{r^2}\cdot rdr=\int_0^{\pi/2}(\cos\theta+\sin\theta)\cdot(1-\frac{1}{\cos\theta+\sin\theta})d\theta\\ &amp;=\int_0^{\pi/2}(\cos\theta+\sin\theta-1)d\theta=2-\frac\pi2\\ [例2]&amp;\color{maroon}计算二重积分\iint_D\sqrt{y^2-xy}dxdy,其中D由y=x,y=1及x=0围成\\ &amp;I=\int_0^1dy\int_0^y\sqrt{y}\sqrt{y-x}dx=\int_0^1\sqrt y(-\frac23(y-x)^{\frac32})|_{x=0}^{x=y}dy\\ &amp;=\frac23|_0^1\sqrt y\cdot y^{\frac32}dy=\frac23\cdot\frac13 y^3|_0^1=\frac29\\ [例3]&amp;\color{maroon}计算二重积分\iint_D\sqrt xdxdy,其中D:x^2+y^2\leq x,y\geq0\\ &amp;I=\int_0^{\pi/2}d\theta\int_0^{\cos\theta}\sqrt{r\cos\theta}\cdot rdr=\int_0^{\pi/2}\sqrt{\cos\theta}\cdot\frac25r^{\frac52}|_{r=0}^{r=\cos\theta}d\theta\\ &amp;=\frac25\int_0^{\pi/2}\cos^3\theta d\theta=\frac25\cdot\frac23=\frac4{15}\\ [例4]&amp;\color{maroon}计算二重积分\iint_D\frac{1+xy}{1+x^2+y^2}d\sigma,其中D:x^2+y^2\leq1,x\geq0\\ &amp;I=\iint_D\frac1{1+x^2+y^2}dxdy+\iint_D\frac{xy}{1+x^2+y^2}dxdy=2\iint_{D_1}\frac1{1+x^2+y^2}dxdy+0\\ &amp;=2\int_0^{\pi/2}d\theta\int_0^1\frac1{a+r^2}rdr=\pi\cdot\frac12\ln2\\ [例5]&amp;\color{maroon}计算二重积分\iint_D\frac{x\sin(\pi\sqrt{x^2+y^2})}{x+y}dxdy,其中D:1\leq x^2+y^2\leq4,x\geq0,y\geq0\\ &amp;I=\iint_D\frac{x\sin(\pi\sqrt{x^2+y^2})}{x+y}dxdy=\iint_D\frac{y\sin(\pi\sqrt{y^2+x^2})}{y+x}dydx\\ &amp;=\frac12\iint_D\sin(\pi\sqrt{x^2+y^2})dxdy=\frac12\int_0^{\pi/2}d\theta\int_1^2\sin(\pi r)\cdot rdr\\ &amp;=\frac\pi4\int_1^2\sin(\pi r)\cdot rdr=\frac\pi4\\ [例6]&amp;\color{maroon}计算二重积分\iint_D\mid x^2+y^2-1\mid d\sigma,其中D:0\leq x\leq1,0\leq y\leq1\\ &amp;I=\iint_{D_1}(1-x^2-y^2)dxdy+\iint_{D_2}(x^2+y^2-1)dxdy=\\ &amp;\iint_{D_1}(1-x^2-y^2)dxdy+\iint_{D-D_1}(x^2+y^2-1)dxdy\\ &amp;=2\iint_{D_1}(1-x^2-y^2)dxdy+\iint_D(x^2+y^2-1)dxdy\\ &amp;=2\int_0^{\pi/2}d\theta\int_0^1(1-r^2)rdr+\int_0^1dx\int_0^1(x^2+y^2-1)dy\\ \end{aligned}  [1]1.2.[2][3][4][5][6]:(1)02dxx2ey2dy=;(2)01dx1x1x2 x2+y2x+ydy=I=02dy0yey2dx=02ey2ydy=21ey202=21(e41)I=0π/2dθ1/(cosθ+sinθ)1r2rcosθ+rsinθrdr=0π/2(cosθ+sinθ)(1cosθ+sinθ1)dθ=0π/2(cosθ+sinθ1)dθ=22πDy2xy dxdy,Dy=x,y=1x=0I=01dy0yy yx dx=01y (32(yx)23)x=0x=ydy=3201y y23dy=3231y301=92Dx dxdy,D:x2+y2x,y0I=0π/2dθ0cosθrcosθ rdr=0π/2cosθ 52r25r=0r=cosθdθ=520π/2cos3θdθ=5232=154D1+x2+y21+xydσ,D:x2+y21,x0I=D1+x2+y21dxdy+D1+x2+y2xydxdy=2D11+x2+y21dxdy+0=20π/2dθ01a+r21rdr=π21ln2Dx+yxsin(πx2+y2 )dxdy,D:1x2+y24,x0,y0I=Dx+yxsin(πx2+y2 )dxdy=Dy+xysin(πy2+x2 )dydx=21Dsin(πx2+y2 )dxdy=210π/2dθ12sin(πr)rdr=4π12sin(πr)rdr=4πDx2+y21dσ,D:0x1,0y1I=D1(1x2y2)dxdy+D2(x2+y21)dxdy=D1(1x2y2)dxdy+DD1(x2+y21)dxdy=2D1(1x2y2)dxdy+D(x2+y21)dxdy=20π/2dθ01(1r2)rdr+01dx01(x2+y21)dy

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值