【数学】函数极限(宇哥笔记)

在这里插入图片描述在这里插入图片描述

定义及使用

定义

lim ⁡ x → ⋅ f ( x ) = A &ThickSpace; ⟺ &ThickSpace; ∀ ε &gt; 0 , x → ⋅ 时 , ∣ f ( x ) − A ∣ &lt; ε { x → x 0 : ∃ δ &gt; 0 , 0 &lt; ∣ x − x 0 ∣ &lt; δ x → ∞ : ∃ x &gt; 0 , ∣ x ∣ &gt; x \begin{aligned} &amp;\lim_{x\to\cdot}f(x)=A\iff\\ &amp;\forall\varepsilon&gt;0,x\to\cdot时,|f(x)-A|&lt;\varepsilon\\ &amp;\begin{cases}x\to x_0:\exists\delta&gt;0,0&lt;|x-x_0|&lt;\delta\\x\to\infty:\exists x&gt;0,|x|&gt;x\end{cases}\\ \end{aligned} xlimf(x)=Aε>0,x,f(x)A<ε{xx0:δ>0,0<xx0<δx:x>0,x>x

性质

唯一性

A 唯 一 : 左 极 限 、 右 极 限 ; 左 导 、 右 导 [ 例 ] 求 lim ⁡ x → 0 tan ⁡ π x ∣ x ∣ ( x 2 − 1 ) I + = lim ⁡ x → 0 + tan ⁡ π x x ( x 2 − 1 ) = lim ⁡ x → 0 + π x x ( − 1 ) = − π I − = lim ⁡ x → 0 − π x ( − x ) ( − 1 ) = π &ThickSpace; ⟹ &ThickSpace; I 不 ∃ [ 注 ] 如 ∣ x ∣ , e x , arctan ⁡ x 需 要 考 虑 这 种 情 况 \begin{aligned} &amp;A唯一:左极限、右极限;左导、右导\\ \color{maroon}[例]&amp;求\lim_{x\to0}\frac{\tan\pi x}{|x|(x^2-1)}\\ &amp;\color{black}I_+=\lim_{x\to0^+}\frac{\tan\pi x}{x(x^2-1)}=\lim_{x\to0^+}\frac{\pi x}{x(-1)}=-\pi\\ &amp;I_-=\lim_{x\to0^-}\frac{\pi x}{(-x)(-1)}=\pi\\ &amp;\implies I不\exists\\ \color{grey}[注]&amp;如|x|,e^x,\arctan x需要考虑这种情况 \end{aligned} [][]Ax0limx(x21)tanπxI+=x0+limx(x21)tanπx=x0+limx(1)πx=πI=x0lim(x)(1)πx=πIx,ex,arctanx

A是一个数

A 是 一 个 数 , 记 lim ⁡ x → ⋅ f ( x ) = A [ 例 ] 已 知 lim ⁡ x → 1 f ( x ) 存 在 , f ( x ) = x − arctan ⁡ ( x − 1 ) − 1 ( x − 1 ) 3 + 2 x 2 e x − 1 ⋅ lim ⁡ x → 1 f ( x ) lim ⁡ x → 1 f ( x ) = lim ⁡ x → 1 ( x − 1 ) − arctan ⁡ ( x − 1 ) ( x − 1 ) 3 + A lim ⁡ x → 1 2 x 2 e x − 1 &ThickSpace; ⟹ &ThickSpace; A = lim ⁡ t → 0 t − arctan ⁡ t t 3 + 2 A &ThickSpace; ⟹ &ThickSpace; A = − 1 3 ∴ f ( x ) = x − arctan ⁡ ( x − 1 ) − 1 ( x − 1 ) 3 − 2 3 x 2 e x − 1 [ 注 ] 以 后 会 知 道 , &quot; 只 要 存 在 &quot; , 则 有 lim ⁡ x → ⋅ f ( x ) = A , lim ⁡ x → ∞ x n = A f ′ ′ ( x 0 ) = A ; ∫ a b f ( x ) d x = A ; ∬ D f ( x , y ) d σ = A \begin{aligned} &amp;A是一个数,记\lim_{x\to\cdot}f(x)=A\\ \color{maroon}[例]&amp;已知\lim_{x\to1}f(x)存在,f(x)=\frac{x-\arctan(x-1)-1}{(x-1)^3}+2x^2e^{x-1}\cdot\lim_{x\to1}f(x)\\ &amp;\color{black}\lim_{x\to1}f(x)=\lim_{x\to1}\frac{(x-1)-\arctan(x-1)}{(x-1)^3}+A\lim_{x\to1}2x^2e^{x-1}\\ &amp;\implies A=\lim_{t\to0}\frac{t-\arctan t}{t^3}+2A\\ &amp;\implies A=-\frac13\\ &amp;\therefore f(x)=\frac{x-\arctan(x-1)-1}{(x-1)^3}-\frac23x^2e^{x-1}\\ \color{grey}[注]&amp;以后会知道,&quot;只要存在&quot;,则有\lim_{x\to\cdot}f(x)=A,\lim_{x\to\infty}x_n=A\\ &amp;f&#x27;&#x27;(x_0)=A;\int_a^bf(x)dx=A;\iint_Df(x,y)d\sigma=A \end{aligned} [][]Axlimf(x)=Ax1limf(x)f(x)=(x1)3xarctan(x1)1+2x2ex1x1limf(x)x1limf(x)=x1lim(x1)3(x1)arctan(x1)+Ax1lim2x2ex1A=t0limt3tarctant+2AA=31f(x)=(x1)3xarctan(x1)132x2ex1""xlimf(x)=A,xlimxn=Af(x0)=A;abf(x)dx=A;Df(x,y)dσ=A

有界性

x → ⋅ , ∣ f ( x ) ∣ ≤ M [ 例 ] 若 lim ⁡ x → x 0 f ( x ) x − x 0 = A ( 存 在 ) , 求 lim ⁡ x → x 0 f ( x ) lim ⁡ x → x 0 f ( x ) = lim ⁡ x → x 0 f ( x ) x − x 0 ⋅ ( x − x 0 ) = 0 ( 前 者 有 界 函 数 , 后 者 无 穷 小 ) [ 注 ] 若 增 加 “ f ( x ) 在 x 0 处 连 续 ” &ThickSpace; ⟹ &ThickSpace; f ( x ) = lim ⁡ x → x 0 f ( x ) = 0 \begin{aligned} &amp;x\to\cdot,|f(x)|\leq M\\ \color{maroon}[例]&amp;若\lim_{x\to x_0}\frac{f(x)}{x-x_0}=A(存在),求\lim_{x\to x_0}f(x)\\ &amp;\color{black}\lim_{x\to x_0}f(x)=\lim_{x\to x_0}\frac{f(x)}{x-x_0}\cdot(x-x_0)=0(前者有界函数,后者无穷小)\\ \color{grey}[注]&amp;若增加“f(x)在x_0处连续”\implies f(x)=\lim_{x\to x_0}f(x)=0 \end{aligned} [][]x,f(x)Mxx0limxx0f(x)=A(),xx0limf(x)xx0limf(x)=xx0limxx0f(x)(xx0)=0()f(x)x0f(x)=xx0limf(x)=0

局部保号性

x → ⋅ , 若 A &gt; 0 , &ThickSpace; ⟹ &ThickSpace; f ( x ) &gt; 0 ( 局 部 保 号 ) ( 不 等 式 脱 帽 法 ) [ 例 ] 证 明 : 当 x → 0 + 时 , 0 &lt; tan ⁡ 2 x − x 2 &lt; x 4 成 立 lim ⁡ x → 0 + tan ⁡ 2 x − x 2 x 4 = lim ⁡ x → 0 + ( tan ⁡ x + x ) ( tan ⁡ x − x ) x 4 = lim ⁡ x → 0 + 2 x ⋅ 1 3 x 3 x 4 = 2 3 &lt; 1 故 lim ⁡ x → 0 + [ tan ⁡ 2 x − x 2 x 4 − 1 ] &lt; 0 &ThickSpace; ⟹ &ThickSpace; tan ⁡ 2 x − x 2 x 4 − 1 &lt; 0 即 tan ⁡ 2 x − x 2 &lt; x 4 ∵ x → 0 + 时 , tan ⁡ x &gt; x , 故 tan ⁡ 2 x &gt; x 2 &ThickSpace; ⟹ &ThickSpace; 0 &lt; tan ⁡ 2 x − x 2 &lt; x 4 \begin{aligned} &amp;x\to\cdot,若A&gt;0,\implies f(x)&gt;0(局部保号)(不等式脱帽法)\\ \color{maroon}[例]&amp;证明:当x\to0^+时,0&lt;\tan^2x-x^2&lt;x^4成立\\ &amp;\color{black}\lim_{x\to0^+}\frac{\tan^2x-x^2}{x^4}=\lim_{x\to0^+}\frac{(\tan x+x)(\tan x-x)}{x^4}=\lim_{x\to0^+}\frac{2x\cdot\frac13x^3}{x^4}=\frac23&lt;1\\ &amp;故\lim_{x\to0^+}[\frac{\tan^2x-x^2}{x^4}-1]&lt;0\implies\frac{\tan^2x-x^2}{x^4}-1&lt;0\\ &amp;即\tan^2x-x^2&lt;x^4\\ &amp;\because x\to0^+时,\tan x&gt;x,故\tan^2x&gt;x^2\implies0&lt;\tan^2x-x^2&lt;x^4 \end{aligned} []x,A>0,f(x)>0()()x0+0<tan2xx2<x4x0+limx4tan2xx2=x0+limx4(tanx+x)(tanxx)=x0+limx42x31x3=32<1x0+lim[x4tan2xx21]<0x4tan2xx21<0tan2xx2<x4x0+tanx>x,tan2x>x20<tan2xx2<x4

等式脱帽法

f ( x ) = A + α , lim ⁡ x → ⋅ α = 0 ( 等 式 脱 帽 法 ) [ 例 ] 设 lim ⁡ x → 0 ln ⁡ [ 1 + f ( x ) sin ⁡ x ] a x − 1 = A , a &gt; 0 , a ≠ 1 , 求 lim ⁡ x → 0 f ( x ) x 2 ln ⁡ [ 1 + f ( x ) sin ⁡ x ] a x − 1 = A + α &ThickSpace; ⟹ &ThickSpace; ln ⁡ [ 1 + f ( x ) sin ⁡ x ] = ( a x − 1 ) ( A + α ) 1 + f ( x ) sin ⁡ x = e ( a x − 1 ) ( A + α ) f ( x ) = [ e ( a x − 1 ) ( A + α ) − 1 ] sin ⁡ x 则 lim ⁡ x → 0 f ( x ) x 2 = lim ⁡ x → 0 [ e ( a x − 1 ) ( A + α ) − 1 ] sin ⁡ x x 2 = lim ⁡ x → 0 ( a x − 1 ) ( A + α ) x = A ⋅ ln ⁡ a \begin{aligned} &amp;f(x)=A+\alpha,\lim_{x\to\cdot}\alpha=0(等式脱帽法)\\ \color{maroon}[例]&amp;设\lim_{x\to0}\frac{\ln[1+\frac{f(x)}{\sin x}]}{a^x-1}=A,a&gt;0,a\neq1,求\lim_{x\to0}\frac{f(x)}{x^2}\\ &amp;\color{black}\frac{\ln[1+\frac{f(x)}{\sin x}]}{a^x-1}=A+\alpha\implies \ln[1+\frac{f(x)}{\sin x}]=(a^x-1)(A+\alpha)\\ &amp;1+\frac{f(x)}{\sin x}=e^{(a^x-1)(A+\alpha)}\\ &amp;f(x)=[e^{(a^x-1)(A+\alpha)}-1]\sin x\\ &amp;则\lim_{x\to0}\frac{f(x)}{x^2}=\lim_{x\to0}\frac{[e^{(a^x-1)(A+\alpha)}-1]\sin x}{x^2}=\lim_{x\to0}\frac{(a^x-1)(A+\alpha)}x=A\cdot\ln a \end{aligned} []f(x)=A+α,xlimα=0()x0limax1ln[1+sinxf(x)]=A,a>0,a̸=1,x0limx2f(x)ax1ln[1+sinxf(x)]=A+αln[1+sinxf(x)]=(ax1)(A+α)1+sinxf(x)=e(ax1)(A+α)f(x)=[e(ax1)(A+α)1]sinxx0limx2f(x)=x0limx2[e(ax1)(A+α)1]sinx=x0limx(ax1)(A+α)=Alna

计算

七种未定式

分 别 为 : 0 0 , ∞ ∞ , ∞ ⋅ 0 , ∞ − ∞ , ∞ 0 , 0 0 , 1 ∞ 技 巧 : 其 中 前 两 种 用 常 规 方 法 如 泰 勒 公 式 、 洛 必 达 法 则 直 接 求 解 第 三 、 四 种 情 况 遇 到 分 数 考 虑 通 分 、 倒 代 换 等 , 想 办 法 等 价 替 换 、 化 简 后 三 种 情 况 一 律 考 虑 取 对 数 其 中 遇 到 根 号 的 情 况 考 虑 有 理 化 、 通 分 , 遇 到 无 穷 大 的 情 况 考 虑 化 为 无 穷 小 , 如 除 以 某 个 数 , 倒 代 换 , 通 分 , 有 理 化 遇 到 三 角 函 数 考 虑 无 穷 小 乘 以 有 界 量 复 杂 函 数 可 以 考 虑 导 数 定 义 法 加 减 中 把 极 限 存 在 ( 不 管 是 否 为 0 ) 的 部 分 拆 项 先 算 出 来 , 乘 除 中 把 极 限 存 在 部 分 先 分 离 出 来 \begin{aligned} &amp;分别为:\frac00,\frac\infty\infty,\infty\cdot0,\infty-\infty,\infty^0,0^0,1^\infty\\ 技巧:&amp;其中前两种用常规方法如泰勒公式、洛必达法则直接求解\\ &amp;第三、四种情况遇到分数考虑通分、倒代换等,想办法等价替换、化简\\ &amp;后三种情况一律考虑取对数\\ &amp;其中遇到根号的情况考虑有理化、通分,\\ &amp;遇到无穷大的情况考虑化为无穷小,如除以某个数,倒代换,通分,有理化\\ &amp;遇到三角函数考虑无穷小乘以有界量\\ &amp;复杂函数可以考虑导数定义法\\ &amp;加减中把极限存在(不管是否为0)的部分拆项先算出来,乘除中把极限存在部分先分离出来 \end{aligned} 00,,0,,0,00,10

化简先行
等价替换

sin ⁡ ∘ ∼ ∘ ∼ tan ⁡ ∘ ∼ arcsin ⁡ ∘ ∼ arctan ⁡ ∘ ∼ ln ⁡ ( 1 + ∘ ) ∼ e ∘ − 1 a ∘ − 1 = e ∘ ln ⁡ a − 1 ∼ ∘ ln ⁡ a ( 1 + ∘ ) k − 1 = e k ln ⁡ ( 1 + ∘ ) − 1 ∼ k ln ⁡ ( 1 + ∘ ) ∼ k ∘ 1 − c o s ∘ = 2 s i n 2 ( ∘ 2 ) ∼ 2 ( ∘ 2 ) 2 = ∘ 2 2 — — — — — — — — — — 以 下 是 进 阶 版 — — — — — — — — — — x − sin ⁡ x ∼ 1 6 x 3 x − arcsin ⁡ x ∼ − 1 6 x 3 x − tan ⁡ x ∼ − 1 3 x 3 x − arctan ⁡ x ∼ 1 3 x 3 x − ln ⁡ ( 1 + x ) ∼ 1 2 x 2 tan ⁡ x − sin ⁡ x ∼ 1 2 x 3 1 − cos ⁡ α x ∼ α 2 x 2 e x − 1 − x ∼ 1 2 x 2 1 + x − 1 − 1 2 x ∼ − 1 8 x 2 f ( x ) → 1 时 , ln ⁡ f ( x ) ∼ f ( x ) − 1 [ 补 ] 若 α = ∘ ( β ) ( 即 lim ⁡ x → ⋅ α β = 0 ) , 则 α + β ∼ β \begin{aligned} &amp;\sin\circ\sim\circ\sim \tan\circ\sim \arcsin\circ\sim \arctan\circ\sim \ln(1+\circ)\sim e^\circ-1\\ &amp;a^\circ-1=e^{\circ \ln a}-1\sim\circ\ln a\\ &amp;(1+\circ)^k-1=e^{k\ln(1+\circ)}-1\sim k\ln(1+\circ)\sim k\circ\\ &amp;1-cos\circ=2sin^2(\frac\circ2)\sim2(\frac\circ2)^2=\frac{\circ^2}{2}\\ &amp;——————————以下是进阶版——————————\\ &amp;x-\sin x \sim\frac16x^3\qquad x-\arcsin x\sim-\frac16x^3\qquad x-\tan x\sim-\frac13x^3\\ &amp;x-\arctan x\sim\frac13x^3\qquad x-\ln(1+x)\sim\frac12x^2\qquad \tan x-\sin x\sim\frac12x^3\\ &amp;1-\cos^\alpha x\sim\frac\alpha2x^2\qquad e^x-1-x\sim\frac12x^2\qquad\sqrt{1+x}-1-\frac12x\sim-\frac18x^2\\ &amp;f(x)\to1时,\ln f(x)\sim f(x)-1\\ [补]&amp;若\alpha=\circ(\beta)(即\lim_{x\to\cdot}\frac{\alpha}{\beta}=0),则\alpha+\beta\sim\beta\\ \end{aligned} []sintanarcsinarctanln(1+)e1a1=elna1lna(1+)k1=ekln(1+)1kln(1+)k1cos=2sin2(2)2(2)2=22xsinx61x3xarcsinx61x3xtanx31x3xarctanx31x3xln(1+x)21x2tanxsinx21x31cosαx2αx2ex1x21x21+x 121x81x2f(x)1,lnf(x)f(x)1α=(β)(xlimβα=0),α+ββ

1. lim ⁡ x → 0 ( 3 + 2 tan ⁡ x ) x − 3 x 3 sin ⁡ 2 x + x 3 cos ⁡ 1 x 由 x 3 cos ⁡ 1 x 3 sin ⁡ 2 x = 1 3 lim ⁡ x → 0 x cos ⁡ 1 x = 0 则 I = lim ⁡ x → 0 3 x [ ( 1 + 2 3 tan ⁡ x ) x − 1 ] 3 x 2 = lim ⁡ x → 0 e x ln ⁡ ( 1 + 2 3 tan ⁡ x ) − 1 3 x 2 = lim ⁡ x → 0 x ln ⁡ ( 1 + 2 3 tan ⁡ x ) 3 x 2 = 2 9 2. lim ⁡ x → 1 − ln ⁡ x ln ⁡ ( 1 − x ) = lim ⁡ x → 1 − ln ⁡ ( 1 + x − 1 ) ln ⁡ ( 1 − x ) = lim ⁡ x → 1 − ( x − 1 ) ln ⁡ ( 1 − x ) t = 1 − x → − lim ⁡ t → 0 + t ln ⁡ t = 0 3. lim ⁡ x → ∞ e − x ( 1 + 1 x ) x 2 = lim ⁡ x → ∞ e − x e x 2 ln ⁡ ( 1 + 1 x ) = lim ⁡ x → ∞ e x 2 ln ⁡ ( 1 + 1 x ) − x 且 lim ⁡ x → ∞ ( x 2 ln ⁡ ( 1 + 1 x ) − x ) = lim ⁡ x → ∞ x 2 ( ln ⁡ ( 1 + 1 x ) − 1 x ) = lim ⁡ x → ∞ x 2 ( − 1 2 ) ( 1 x ) 2 = − 1 2 4. lim ⁡ x → 0 sin ⁡ x + x 2 sin ⁡ 1 x ( 1 + cos ⁡ x ) ln ⁡ ( 1 + x ) = lim ⁡ x → 0 x 2 x = 1 2 ( 无 穷 小 乘 以 有 界 量 ) 5. lim ⁡ x → 0 1 x 3 [ ( 2 + cos ⁡ x 3 ) x − 1 ] = lim ⁡ x → 0 1 x 3 [ ( 1 + cos ⁡ x − 1 3 ) x − 1 ] = lim ⁡ x → 0 1 x 3 ⋅ x ⋅ cos ⁡ x − 1 3 = − 1 6 6. lim ⁡ x → 0 cos ⁡ x − cos ⁡ x 3 sin ⁡ 2 x = lim ⁡ x → 0 cos ⁡ x − 1 + 1 − cos ⁡ x 3 x 2 = lim ⁡ x → 0 cos ⁡ x − 1 x 2 + lim ⁡ x → 0 1 − cos ⁡ x 3 x 2 = lim ⁡ x → 0 − 1 4 x 2 x 2 + lim ⁡ x → 0 1 6 x 2 x 2 = − 1 12 \begin{aligned} 1.&amp;\color{maroon}\lim_{x\to0}\frac{(3+2\tan x)^x-3^x}{3\sin^2x+x^3\cos\frac1x}\\ &amp;由\frac{x^3\cos\frac1x}{3\sin^2x}=\frac13\lim_{x\to0}x\cos\frac1x=0\\ &amp;则I=\lim_{x\to0}\frac{3^x[(1+\frac23\tan x)^x-1]}{3x^2}\\ &amp;=\lim_{x\to0}\frac{e^{x\ln(1+\frac23\tan x)}-1}{3x^2}\\ &amp;=\lim_{x\to0}\frac{x\ln(1+\frac23\tan x)}{3x^2}=\frac29\\ 2.&amp;\color{maroon}\lim_{x\to1^-}\ln x\ln(1-x)\\ =&amp;\lim_{x\to1^-}\ln(1+x-1)\ln(1-x)\\ =&amp;\lim_{x\to1^-}(x-1)\ln(1-x)\underrightarrow{t=1-x}-\lim_{t\to0^+}t\ln t=0\\ 3.&amp;\color{maroon}\lim_{x\to\infty}e^{-x}(1+\frac1x)^{x^2}\\ =&amp;\lim_{x\to\infty}e^{-x}e^{x^2\ln(1+\frac1x)}\\ =&amp;\lim_{x\to\infty}e^{x^2\ln(1+\frac1x)-x}\\ &amp;且\lim_{x\to\infty}(x^2\ln(1+\frac1x)-x)\\ =&amp;\lim_{x\to\infty}x^2(\ln(1+\frac1x)-\frac1x)\\ =&amp;\lim_{x\to\infty}x^2(-\frac12)(\frac1x)^2=-\frac12\\ 4.&amp;\color{maroon}\lim_{x\to0}\frac{\sin x+x^2\sin\frac1x}{(1+\cos x)\ln(1+x)}\\ =&amp;\lim_{x\to0}\frac{x}{2x}=\frac12(无穷小乘以有界量)\\ 5.&amp;\color{maroon}\lim_{x\to0}\frac1{x^3}[(\frac{2+\cos x}{3})^x-1]\\ =&amp;\lim_{x\to0}\frac1{x^3}[(1+\frac{\cos x-1}{3})^x-1]\\ =&amp;\lim_{x\to0}\frac1{x^3}\cdot x\cdot \frac{\cos x-1}3\\ =&amp;-\frac16\\ 6.&amp;\color{maroon}\lim_{x\to0}\frac{\sqrt{\cos x}-\sqrt[3]{\cos x}}{\sin^2x}\\ =&amp;\lim_{x\to0}\frac{\sqrt{\cos x}-1+1-\sqrt[3]{\cos x}}{x^2}\\ =&amp;\lim_{x\to0}\frac{\sqrt{\cos x}-1}{x^2}+\lim_{x\to0}\frac{1-\sqrt[3]{\cos x}}{x^2}\\ =&amp;\lim_{x\to0}\frac{-\frac14x^2}{x^2}+\lim_{x\to0}\frac{\frac16x^2}{x^2}\\ =&amp;-\frac1{12}\\ \end{aligned} 1.2.==3.====4.=5.===6.====x0lim3sin2x+x3cosx1(3+2tanx)x3x3sin2xx3cosx1=31x0limxcosx1=0I=x0lim3x23x[(1+32tanx)x1]=x0lim3x2exln(1+32tanx)1=x0lim3x2xln(1+32tanx)=92x1limlnxln(1x)x1limln(1+x1)ln(1x)x1lim(x1)ln(1x) t=1xt0+limtlnt=0xlimex(1+x1)x2xlimexex2ln(1+x1)xlimex2ln(1+x1)xxlim(x2ln(1+x1)x)xlimx2(ln(1+x1)x1)xlimx2(21)(x1)2=21x0lim(1+cosx)ln(1+x)sinx+x2sinx1x0lim2xx=21()x0limx31[(32+cosx)x1]x0limx31[(1+3cosx1)x1]x0limx31x3cosx161x0limsin2xcosx 3cosx x0limx2cosx 1+13cosx x0limx2cosx 1+x0limx213cosx x0limx241x2+x0limx261x2121

恒等变形

提取公因式

换元(倒代换、平移替换)

通分

因式分解公式

取对数

有理化

1. lim ⁡ x → 0 ( 1 + x 1 − e − x − 1 x ) = lim ⁡ x → 0 x + x 2 − 1 + e − x ( 1 − e − x ) ⋅ x ( 通 分 ) = lim ⁡ x → 0 1 + 2 x − e − x 2 x = 1 + 1 2 = 3 2 2. lim ⁡ x → ∞ e − x ( 1 + 1 x ) x 2 = lim ⁡ x → ∞ e − x e x 2 ln ⁡ ( 1 + 1 x ) ( 取 对 数 ) = e lim ⁡ x → ∞ [ x 2 ln ⁡ ( 1 + 1 x ) − x ] 令 x = 1 t → e lim ⁡ t → 0 [ ln ⁡ ( 1 + t ) t 2 − 1 t ] ( 倒 代 换 ) = e lim ⁡ t → 0 ln ⁡ ( 1 + t ) − t t 2 = e − 1 2 3. lim ⁡ x → 0 + x ln ⁡ ( ln ⁡ x − 1 ln ⁡ x + 1 ) = e lim ⁡ x → 0 + ln ⁡ ( ln ⁡ x − 1 ln ⁡ x + 1 ) ⋅ ln ⁡ x = e lim ⁡ x → 0 + ln ⁡ ( 1 − 2 ln ⁡ x + 1 ) ⋅ ln ⁡ x = e lim ⁡ x → 0 + − 2 ln ⁡ x + 1 ⋅ ln ⁡ x = e − 2 4. lim ⁡ x → 0 + ( sin ⁡ x x ) 1 1 − cos ⁡ x = e lim ⁡ x → 0 + 1 1 − cos ⁡ x ( sin ⁡ x x − 1 ) = e lim ⁡ x → 0 + sin ⁡ x − x 1 2 x 2 ⋅ x = e − 1 3 5. lim ⁡ x → ∞ ( x 6 + x 5 6 − x 6 − x 5 6 ) 令 x = 1 t → lim ⁡ t → 0 + 1 t 6 + 1 t 5 6 − 1 t 6 − 1 t 5 6 = lim ⁡ t → 0 + ( 1 + t 6 t − 1 − t 6 t ) = lim ⁡ t → 0 + ( 1 + t ) 1 6 − ( 1 − t ) 1 6 t = lim ⁡ t → 0 + 1 + 1 6 t − ( 1 − 1 6 t ) + ∘ ( t ) t = lim ⁡ t → 0 + 1 3 t + ∘ ( t ) t = 1 3 \begin{aligned} 1.&amp;\color{maroon}\lim_{x\to0}(\frac{1+x}{1-e^{-x}}-\frac1x)\\ =&amp;\lim_{x\to0}\frac{x+x^2-1+e^{-x}}{(1-e^{-x})\cdot x}(通分)\\ =&amp;\lim_{x\to0}\frac{1+2x-e^{-x}}{2x}=1+\frac12=\frac32\\ 2.&amp;\color{maroon}\lim_{x\to\infty}e^{-x}(1+\frac1x)^{x^2}\\ =&amp;\lim_{x\to\infty}e^{-x}e^{x^2\ln(1+\frac1x)}(取对数)\\ =&amp;e^{\lim_{x\to\infty}[x^2\ln(1+\frac1x)-x]}\\ \underrightarrow{令x=\frac1t}&amp;e^{\lim_{t\to0}[\frac{\ln(1+t)}{t^2}-\frac1t]}(倒代换)\\ =&amp;e^{\lim_{t\to0}\frac{\ln(1+t)-t}{t^2}}=e^{-\frac12}\\ 3.&amp;\color{maroon}\lim_{x\to0^+}x^{\ln(\frac{\ln x-1}{\ln x+1})}\\ =&amp;e^{\lim_{x\to0^+}\ln(\frac{\ln x-1}{\ln x+1})\cdot\ln x}\\ =&amp;e^{\lim_{x\to0^+}\ln(1-\frac2{\ln x+1})\cdot \ln x}\\ =&amp;e^{\lim_{x\to0^+}\frac{-2}{\ln x+1}\cdot\ln x}=e^{-2}\\ 4.&amp;\color{maroon}\lim_{x\to0^+}(\frac{\sin x}{x})^\frac1{1-\cos x}\\ =&amp;e^{\lim_{x\to0^+}\frac1{1-\cos x}(\frac{\sin x}x-1)}\\ =&amp;e^{\lim_{x\to0^+}\frac{\sin x-x}{\frac12x^2\cdot x}}\\ =&amp;e^{-\frac13}\\ 5.&amp;\color{maroon}\lim_{x\to\infty}(\sqrt[6]{x^6+x^5}-\sqrt[6]{x^6-x^5})\\ \underrightarrow{令x=\frac1t}&amp;\lim_{t\to0^+}\sqrt[6]{\frac1{t^6}+\frac1{t^5}}-\sqrt[6]{\frac1{t^6}-\frac1{t^5}}\\ =&amp;\lim_{t\to0^+}(\frac{\sqrt[6]{1+t}}{t}-\frac{\sqrt[6]{1-t}}t)\\ =&amp;\lim_{t\to0^+}\frac{(1+t)^\frac16-(1-t)^\frac16}{t}\\ =&amp;\lim_{t\to0^+}\frac{1+\frac16t-(1-\frac16t)+\circ(t)}t\\ =&amp;\lim_{t\to0^+}\frac{\frac13t+\circ(t)}{t}=\frac13\\ \end{aligned} 1.==2.== x=t1=3.===4.===5. x=t1====x0lim(1ex1+xx1)x0lim(1ex)xx+x21+ex()x0lim2x1+2xex=1+21=23xlimex(1+x1)x2xlimexex2ln(1+x1)()elimx[x2ln(1+x1)x]elimt0[t2ln(1+t)t1]()elimt0t2ln(1+t)t=e21x0+limxln(lnx+1lnx1)elimx0+ln(lnx+1lnx1)lnxelimx0+ln(1lnx+12)lnxelimx0+lnx+12lnx=e2x0+lim(xsinx)1cosx1elimx0+1cosx1(xsinx1)elimx0+21x2xsinxxe31xlim(6x6+x5 6x6x5 )t0+lim6t61+t51 6t61t51 t0+lim(t61+t t61t )t0+limt(1+t)61(1t)61t0+limt1+61t(161t)+(t)t0+limt31t+(t)=31

6. lim ⁡ x → 0 1 + tan ⁡ x − 1 + sin ⁡ x x ln ⁡ ( 1 + x ) − x 2 = lim ⁡ x → 0 1 − 1 2 x 3 ⋅ tan ⁡ x − sin ⁡ x 1 + tan ⁡ x + 1 + sin ⁡ x = − 1 2 7. lim ⁡ x → 0 cos ⁡ x − cos ⁡ x 3 sin ⁡ 2 x [ 分 析 ] 令 cos ⁡ x 6 = t , 原 式 = lim ⁡ t → 1 − t 3 − t 2 1 − t 12 = − lim ⁡ t → 1 − t − 1 t 12 − 1 = − lim ⁡ t → 1 − t − 1 ( t − 1 ) ( t 11 + t 10 + … + 1 ) = − 1 12 [ 注 ] a n − b n = ( a − b ) ( a n − 1 + a n − 2 b + … + a b n − 2 + b n − 1 ) 8. lim ⁡ x → + ∞ ( x + 1 + x 2 ) 1 x = e lim ⁡ x → + ∞ 1 x ln ⁡ ( x + 1 + x 2 ) = e lim ⁡ x → + ∞ 1 x + 1 + x 2 ( 1 + 1 2 ( 1 + x 2 ) − 1 2 ⋅ 2 x ) = e lim ⁡ x → + ∞ 1 1 + x 2 = e 0 = 1 9. lim ⁡ x → 0 ( 1 + x 2 ) ( 1 − cos ⁡ 2 x ) − 2 x 2 x 4 ( 拆 ) = lim ⁡ x → 0 1 − cos ⁡ 2 x − 2 x 2 x 4 + lim ⁡ x → 0 x 2 ( 1 − cos ⁡ 2 x ) x 4 = lim ⁡ x → 0 1 − ( 1 − 1 2 ( 2 x ) 2 + 1 24 ( 2 x ) 4 + ∘ ( x 4 ) ) − 2 x 2 x 4 + 2 = lim ⁡ x → 0 − 16 24 x 4 x 4 + 2 = 4 3 10. lim ⁡ x → 0 1 − x 2 sin ⁡ 2 x − tan ⁡ 2 x x 2 [ ln ⁡ ( 1 + x ) ] 2 = lim ⁡ x → 0 1 − x 2 sin ⁡ 2 x − sin ⁡ 2 x + sin ⁡ 2 x − tan ⁡ 2 x x 4 = lim ⁡ x → 0 sin ⁡ x ( 1 − x 2 − 1 ) x 4 + lim ⁡ x → 0 sin ⁡ 2 x − tan ⁡ 2 x x 4 = − 1 2 + lim ⁡ x → 0 ( sin ⁡ x + tan ⁡ x ) ( sin ⁡ x + tan ⁡ ) x 4 = − 1 2 + lim ⁡ x → 0 ( sin ⁡ x + tan ⁡ x ) ( − 1 2 x 3 ) x 4 = − 1 2 + ( − 1 2 ) ( 1 + 1 ) = − 3 2 \begin{aligned} 6.&amp;\color{maroon}\lim_{x\to0}\frac{\sqrt{1+\tan x}-\sqrt{1+\sin x}}{x\ln(1+x)-x^2}\\ =&amp;\lim_{x\to0}\frac{1}{-\frac12x^3}\cdot\frac{\tan x-\sin x}{\sqrt{1+\tan x}+\sqrt{1+\sin x}}=-\frac12\\ 7.&amp;\color{maroon}\lim_{x\to0}\frac{\sqrt{\cos x}-\sqrt[3]{\cos x}}{\sin^2x}\\ [分析]&amp;令\sqrt[6]{\cos x}=t,原式=\lim_{t\to1^-}\frac{t^3-t^2}{1-t^{12}}=-\lim_{t\to1^-}\frac{t-1}{t^{12}-1}\\ =&amp;-\lim_{t\to1^-}\frac{t-1}{(t-1)(t^{11}+t^{10}+\ldots+1)}=-\frac1{12}\\ [注]&amp;\color{red}a^n-b^n=(a-b)(a^{n-1}+a^{n-2}b+\ldots+ab^{n-2}+b^{n-1})\\ 8.&amp;\color{maroon}\lim_{x\to+\infty}(x+\sqrt{1+x^2})^\frac1x\\ =&amp;e^{\lim_{x\to+\infty}\frac1x\ln(x+\sqrt{1+x^2})}=e^{\lim_{x\to+\infty}\frac{1}{x+\sqrt{1+x^2}}(1+\frac12(1+x^2)^{-\frac12}\cdot2x)}\\ =&amp;e^{\lim_{x\to+\infty}\frac{1}{\sqrt{1+x^2}}}=e^0=1\\ 9.&amp;\color{maroon}\lim_{x\to0}\frac{(1+x^2)(1-\cos2x)-2x^2}{x^4}(拆)\\ =&amp;\lim_{x\to0}\frac{1-\cos2x-2x^2}{x^4}+\lim_{x\to0}\frac{x^2(1-\cos2x)}{x^4}\\ =&amp;\lim_{x\to0}\frac{1-(1-\frac12(2x)^2+\frac1{24}(2x)^4+\circ(x^4))-2x^2}{x^4}+2\\ =&amp;\lim_{x\to0}\frac{-\frac{16}{24}x^4}{x^4}+2=\frac43\\ 10.&amp;\color{maroon}\lim_{x\to0}\frac{\sqrt{1-x^2}\sin^2x-\tan^2x}{x^2[\ln(1+x)]^2}\\ =&amp;\lim_{x\to0}\frac{\sqrt{1-x^2}\sin^2x-\sin^2x+\sin^2x-\tan^2x}{x^4}\\ =&amp;\lim_{x\to0}\frac{\sin^x(\sqrt{1-x^2}-1)}{x^4}+\lim_{x\to0}\frac{\sin^2x-\tan^2x}{x^4}\\ =&amp;-\frac12+\lim_{x\to0}\frac{(\sin x+\tan x)(\sin x+\tan )}{x^4}\\ =&amp;-\frac12+\lim_{x\to0}\frac{(\sin x+\tan x)(-\frac12x^3)}{x^4}\\ =&amp;-\frac12+(-\frac12)(1+1)=-\frac32\\ \end{aligned} 6.=7.[]=[]8.==9.===10.=====x0limxln(1+x)x21+tanx 1+sinx x0lim21x311+tanx +1+sinx tanxsinx=21x0limsin2xcosx 3cosx 6cosx =t,=t1lim1t12t3t2=t1limt121t1t1lim(t1)(t11+t10++1)t1=121anbn=(ab)(an1+an2b++abn2+bn1)x+lim(x+1+x2 )x1elimx+x1ln(x+1+x2 )=elimx+x+1+x2 1(1+21(1+x2)212x)elimx+1+x2 1=e0=1x0limx4(1+x2)(1cos2x)2x2()x0limx41cos2x2x2+x0limx4x2(1cos2x)x0limx41(121(2x)2+241(2x)4+(x4))2x2+2x0limx42416x4+2=34x0limx2[ln(1+x)]21x2 sin2xtan2xx0limx41x2 sin2xsin2x+sin2xtan2xx0limx4sinx(1x2 1)+x0limx4sin2xtan2x21+x0limx4(sinx+tanx)(sinx+tan)21+x0limx4(sinx+tanx)(21x3)21+(21)(1+1)=23

11. lim ⁡ x → ∞ x 2 ( a 1 x + a − 1 x − 2 ) , 其 中 常 数 a &gt; 0 令 1 x = t I = lim ⁡ t → 0 1 t 2 ( a t + a − t − 2 ) = lim ⁡ t → 0 a t ln ⁡ a + a − t ⋅ ln ⁡ a − 1 2 t = ln ⁡ 2 a 12. lim ⁡ x → 0 ( cos ⁡ x cos ⁡ 2 x ) 1 x 2 I = e A , 其 中 A = lim ⁡ x → 0 1 x 2 ( cos ⁡ x cos ⁡ 2 x − 1 ) = lim ⁡ x → 0 cos ⁡ x − cos ⁡ 2 x x 2 cos ⁡ 2 x = lim ⁡ x → 0 cos ⁡ x − cos ⁡ 2 x x 2 = lim ⁡ x → 0 cos ⁡ x − 1 + 1 − cos ⁡ 2 x x 2 = lim ⁡ x → 0 cos ⁡ x − 1 x 2 + lim ⁡ x → 0 1 − cos ⁡ 2 x x 2 = − 1 2 + lim ⁡ x → 0 1 2 ( 2 x ) 2 x 2 = 3 2 故 I = e 3 2 13. lim ⁡ x → + ∞ [ ( x 3 + x 2 − tan ⁡ 1 x ) e 1 x − 1 + x 6 ] = lim ⁡ x → + ∞ [ ( x 3 + x 2 ) e 1 x − 1 + x 6 ] − lim ⁡ x → + ∞ tan ⁡ 1 x ⋅ e 1 x t = 1 x → lim ⁡ t → 0 + [ ( 1 t 3 + 1 2 t ) e t − 1 + 1 t 6 ] − 0 = lim ⁡ t → 0 + ( 2 + t 2 ) e t − 2 1 + t 6 + 2 − 2 2 t 3 = lim ⁡ t → 0 + ( 2 + t 2 ) e t − 2 2 t 3 − 2 lim ⁡ t → 0 + 1 + t 6 − 1 2 t 3 = lim ⁡ t → 0 + ( 2 + t 2 ) ( 1 + t + 1 2 t 2 + 1 6 t 3 + ∘ ( t 3 ) ) − 2 2 t 3 − 0 = lim ⁡ t → 0 + 2 t + 2 t 2 + 4 3 t 3 2 t 3 = ∞ 14. lim ⁡ x → 0 [ a x − ( 1 x 2 − a 2 ) ln ⁡ ( 1 + a x ) ] . 其 中 a ≠ 0 = lim ⁡ x → 0 [ a x − 1 x 2 ln ⁡ ( 1 + a x ) ] + a 2 lim ⁡ x → 0 ln ⁡ ( 1 + a x ) = lim ⁡ x → 0 a x − ln ⁡ ( 1 + a x ) x 2 + 0 = lim ⁡ x → 0 1 2 ( a x ) 2 x 2 = 1 2 a 2 15. lim ⁡ x → 0 ( 1 + x ) 1 x − ( 1 + 2 x ) 1 2 x sin ⁡ x = lim ⁡ x → 0 e ln ⁡ ( 1 + x ) / x − e ln ⁡ ( 1 + 2 x ) / 2 x x = lim ⁡ x → 0 e ln ⁡ ( 1 + 2 x ) / 2 x ( e ln ⁡ ( 1 + x ) / x − ln ⁡ ( 1 + 2 x ) / 2 x − 1 ) x = e lim ⁡ x → 0 ln ⁡ ( 1 + x ) / x − ln ⁡ ( 1 + 2 x ) / 2 x x = e lim ⁡ x → 0 2 ln ⁡ ( 1 + x ) − ln ⁡ ( 1 + 2 x ) 2 x 2 = e ⋅ 2 ( x − 1 2 x 2 ) + ∘ ( x 2 ) − ( 2 x − 1 2 ( 2 x ) 2 ) − ∘ ( x 2 ) 2 x 2 = e ⋅ 1 2 = e 2 \begin{aligned} 11.&amp;\color{maroon}\lim_{x\to\infty}x^2(a^{\frac1x}+a^{-\frac1x}-2),其中常数a&gt;0\\ &amp;令\frac1x=t\\ I&amp;=\lim_{t\to0}\frac1{t^2}(a^t+a^{-t}-2)\\ &amp;=\lim_{t\to0}\frac{a^t\ln a+a^{-t}\cdot\ln a^{-1}}{2t}\\ &amp;=\ln^2a\\ 12.&amp;\color{maroon}\lim_{x\to0}(\frac{\cos x}{\cos2x})^{\frac1{x^2}}\\ I&amp;=e^A,其中A=\lim_{x\to0}\frac1{x^2}(\frac{\cos x}{\cos2x}-1)\\ &amp;=\lim_{x\to0}\frac{\cos x-\cos2x}{x^2\cos2x}\\ &amp;=\lim_{x\to0}\frac{\cos x-\cos2x}{x^2}\\ &amp;=\lim_{x\to0}\frac{\cos x-1+1-\cos2x}{x^2}\\ &amp;=\lim_{x\to0}\frac{\cos x-1}{x^2}+\lim_{x\to0}\frac{1-\cos2x}{x^2}\\ &amp;=-\frac12+\lim_{x\to0}\frac{\frac12(2x)^2}{x^2}\\ &amp;=\frac32\quad 故I=e^{\frac32}\\ 13.&amp;\color{maroon}\lim_{x\to+\infty}[(x^3+\frac x2-\tan\frac1x)e^{\frac1x}-\sqrt{1+x^6}]\\ =&amp;\lim_{x\to+\infty}[(x^3+\frac x2)e^{\frac1x}-\sqrt{1+x^6}]-\lim_{x\to+\infty}\tan\frac1x\cdot e^{\frac1x}\\ \underrightarrow{t=\frac1x}&amp;\lim_{t\to0^+}[(\frac1{t^3}+\frac1{2t})e^t-\sqrt{1+\frac1{t^6}}]-0\\ =&amp;\lim_{t\to0^+}\frac{(2+t^2)e^t-2\sqrt{1+t^6}+2-2}{2t^3}\\ =&amp;\lim_{t\to0^+}\frac{(2+t^2)e^t-2}{2t^3}-2\lim_{t\to0^+}\frac{\sqrt{1+t^6}-1}{2t^3}\\ =&amp;\lim_{t\to0^+}\frac{(2+t^2)(1+t+\frac12t^2+\frac16t^3+\circ(t^3))-2}{2t^3}-0\\ =&amp;\lim_{t\to0^+}\frac{2t+2t^2+\frac43t^3}{2t^3}=\infty\\ 14.&amp;\color{maroon}\lim_{x\to0}[\frac ax-(\frac1{x^2}-a^2)\ln(1+ax)].其中a\neq0\\ =&amp;\lim_{x\to0}[\frac ax-\frac1{x^2}\ln(1+ax)]+a^2\lim_{x\to0}\ln(1+ax)\\ =&amp;\lim_{x\to0}\frac{ax-\ln(1+ax)}{x^2}+0\\ =&amp;\lim_{x\to0}\frac{\frac12(ax)^2}{x^2}=\frac12a^2\\ 15.&amp;\color{maroon}\lim_{x\to0}\frac{(1+x)^{\frac1x}-(1+2x)^{\frac1{2x}}}{\sin x}\\ =&amp;\lim_{x\to0}\frac{e^{\ln(1+x)/x}-e^{\ln(1+2x)/2x}}{x}\\ =&amp;\lim_{x\to0}\frac{e^{\ln(1+2x)/2x}(e^{\ln(1+x)/x-\ln(1+2x)/2x}-1)}x\\ =&amp;e\lim_{x\to0}\frac{\ln(1+x)/x-\ln(1+2x)/2x}{x}\\ =&amp;e\lim_{x\to0}\frac{2\ln(1+x)-\ln(1+2x)}{2x^2}\\ =&amp;e\cdot\frac{2(x-\frac12x^2)+\circ(x^2)-(2x-\frac12(2x)^2)-\circ(x^2)}{2x^2}\\ =&amp;e\cdot\frac12=\frac e2\\ \end{aligned} 11.I12.I13.= t=x1====14.===15.======xlimx2(ax1+ax12),a>0x1=t=t0limt21(at+at2)=t0lim2tatlna+atlna1=ln2ax0lim(cos2xcosx)x21=eA,A=x0limx21(cos2xcosx1)=x0limx2cos2xcosxcos2x=x0limx2cosxcos2x=x0limx2cosx1+1cos2x=x0limx2cosx1+x0limx21cos2x=21+x0limx221(2x)2=23I=e23x+lim[(x3+2xtanx1)ex11+x6 ]x+lim[(x3+2x)ex11+x6 ]x+limtanx1ex1t0+lim[(t31+2t1)et1+t61 ]0t0+lim2t3(2+t2)et21+t6 +22t0+lim2t3(2+t2)et22t0+lim2t31+t6 1t0+lim2t3(2+t2)(1+t+21t2+61t3+(t3))20t0+lim2t32t+2t2+34t3=x0lim[xa(x21a2)ln(1+ax)].a̸=0x0lim[xax21ln(1+ax)]+a2x0limln(1+ax)x0limx2axln(1+ax)+0x0limx221(ax)2=21a2x0limsinx(1+x)x1(1+2x)2x1x0limxeln(1+x)/xeln(1+2x)/2xx0limxeln(1+2x)/2x(eln(1+x)/xln(1+2x)/2x1)ex0limxln(1+x)/xln(1+2x)/2xex0lim2x22ln(1+x)ln(1+2x)e2x22(x21x2)+(x2)(2x21(2x)2)(x2)e21=2e

及时提出极限=c≠0的因式

1. lim ⁡ x → 3 + cos ⁡ x ln ⁡ ( x − 3 ) ln ⁡ ( e x − e 3 ) = cos ⁡ 3 lim ⁡ x → 3 + ln ⁡ ( x − 3 ) ln ⁡ ( e x − e 3 ) = cos ⁡ 3 lim ⁡ x → 3 + 1 x − 3 ⋅ e x − e 3 e x = cos ⁡ 3 e 3 lim ⁡ x → 3 + e x − e 3 x − 3 = cos ⁡ 3 e 3 lim ⁡ x → 3 + e x 1 = cos ⁡ 3 \begin{aligned} 1.&amp;\color{maroon}\lim_{x\to3^+}\frac{\cos x\ln(x-3)}{\ln(e^x-e^3)}\\ =&amp;\cos3\lim_{x\to3^+}\frac{\ln(x-3)}{\ln(e^x-e^3)}\\ =&amp;\cos3\lim_{x\to3^+}\frac1{x-3}\cdot\frac{e^x-e^3}{e^x}\\ =&amp;\frac{\cos3}{e^3}\lim_{x\to3^+}\frac{e^x-e^3}{x-3}\\ =&amp;\frac{\cos3}{e^3}\lim_{x\to3^+}\frac{e^x}1=\cos3\\ \end{aligned} 1.====x3+limln(exe3)cosxln(x3)cos3x3+limln(exe3)ln(x3)cos3x3+limx31exexe3e3cos3x3+limx3exe3e3cos3x3+lim1ex=cos3

洛必达法则

1. lim ⁡ x → ⋅ f ( x ) g ( x ) = lim ⁡ x → ⋅ f ′ ( x ) g ′ ( x ) 2. lim ⁡ x → a ∫ a x f ( t ) d t ∫ a x g ( t ) d t = lim ⁡ x → a f ( x ) g ( x ) 3. lim ⁡ x → a ∫ a φ ( x ) f ( t ) d t ∫ a ϕ ( x ) g ( t ) d t = lim ⁡ x → a f [ φ ( x ) ] ⋅ φ ′ ( x ) g [ ϕ ( x ) ] ⋅ ϕ ′ ( x ) [ 注 ] 1. 0 0 型 2. 可 导 3. 结 果 为 0 , c ≠ 0 , ∞ \begin{aligned} 1.&amp;\lim_{x\to\cdot}\frac{f(x)}{g(x)}=\lim_{x\to\cdot}\frac{f&#x27;(x)}{g&#x27;(x)}\\ 2.&amp;\lim_{x\to a}\frac{\int_a^xf(t)dt}{\int_a^xg(t)dt}=\lim_{x\to a}\frac{f(x)}{g(x)}\\ 3.&amp;\lim_{x\to a}\frac{\int_a^\varphi(x)f(t)dt}{\int_a^\phi(x)g(t)dt}=\lim_{x\to a}\frac{f[\varphi(x)]\cdot\varphi&#x27;(x)}{g[\phi(x)]\cdot\phi&#x27;(x)}\\ [注]&amp;1.\frac00型\quad2.可导\quad3.结果为0,c\neq0,\infty\\ \end{aligned} 1.2.3.[]xlimg(x)f(x)=xlimg(x)f(x)xalimaxg(t)dtaxf(t)dt=xalimg(x)f(x)xalimaϕ(x)g(t)dtaφ(x)f(t)dt=xalimg[ϕ(x)]ϕ(x)f[φ(x)]φ(x)1.002.3.0,c̸=0,

1. lim ⁡ x → 0 ∫ 0 x sin ⁡ 2 t 4 + t 2 ∫ 0 x ( t + 1 − 1 ) d t d t = lim ⁡ x → 0 ∫ 0 x sin ⁡ 2 t 4 + t 2 d t ∫ 0 x ( t + 1 − 1 ) d t = lim ⁡ x → 0 sin ⁡ 2 x 4 + x 2 x + 1 − 1 = lim ⁡ x → 0 2 x 2 ( 1 2 x ) = 2 2. lim ⁡ x → ∞ ∫ 1 x [ t 2 ( e 1 t − 1 ) − t ] d t x 2 ln ⁡ ( 1 + 1 x ) = lim ⁡ x → ∞ = x 2 ( e 1 x − 1 ) − x 1 x = 1 t → lim ⁡ t → 0 + ( e t − 1 t 2 − 1 t ) = lim ⁡ t → 0 + e t − 1 − t t 2 = 1 2 \begin{aligned} 1.&amp;\color{maroon}\lim_{x\to0}\int_0^x\frac{\sin2t}{\sqrt{4+t^2}\int_0^x(\sqrt{t+1}-1)dt}dt\\ =&amp;\lim_{x\to0}\frac{\int_0^x\frac{\sin2t}{\sqrt{4+t^2}}dt}{\int_0^x(\sqrt{t+1}-1)dt}\\ =&amp;\lim_{x\to0}\frac{\frac{\sin2x}{\sqrt{4+x^2}}}{\sqrt{x+1}-1}\\ =&amp;\lim_{x\to0}\frac{2x}{2(\frac12x)}=2\\ 2.&amp;\color{maroon}\lim_{x\to\infty}\frac{\int_1^x[t^2(e^\frac1t-1)-t]dt}{x^2\ln(1+\frac1x)}\\ =&amp;\lim_{x\to\infty}=\frac{x^2(e^\frac1x-1)-x}{1}\underrightarrow{x=\frac1t}\lim_{t\to0^+}(\frac{e^t-1}{t^2}-\frac1t)\\ =&amp;\lim_{t\to0^+}\frac{e^t-1-t}{t^2}=\frac12\\ \end{aligned} 1.===2.==x0lim0x4+t2 0x(t+1 1)dtsin2tdtx0lim0x(t+1 1)dt0x4+t2 sin2tdtx0limx+1 14+x2 sin2xx0lim2(21x)2x=2xlimx2ln(1+x1)1x[t2(et11)t]dtxlim=1x2(ex11)x x=t1t0+lim(t2et1t1)t0+limt2et1t=21

泰勒公式
公式

泰 勒 发 现 , 任 何 可 导 函 数 都 可 以 写 成 ∑ a n x n , 这 样 , 任 何 可 导 函 数 都 具 有 了 统 一 美 , 也 可 以 统 一 计 算 当 x → 0 时 , 就 如 以 下 常 见 的 函 数 泰 勒 展 开 式 , 最 后 的 ∘ ( x 3 ) 被 称 作 佩 亚 诺 余 项 sin ⁡ x = x − 1 6 x 3 + 1 5 ! x 5 − x 7 7 ! + ⋯ + ( − 1 ) n x 2 n + 1 ( 2 n + 1 ) ! + ⋯ = ∑ n = 0 ∞ ( − 1 ) n ⋅ x 2 n + 1 ( 2 n + 1 ) ! e x = 1 + x + x 2 2 + x 3 6 + ⋯ + x n n ! + ⋯ = ∑ n = 0 ∞ x n n ! cos ⁡ x = 1 − 1 2 x 2 + 1 24 x 4 − x 6 6 ! + ⋯ + ( − 1 ) n x 2 n ( 2 n ) ! + ⋯ = ∑ n = 0 ∞ ( − 1 ) n ⋅ x 2 n ( 2 n ) ! ln ⁡ ( 1 + x ) = x − 1 2 x 2 + 1 3 x 3 − ⋯ + ( − 1 ) n − 1 x n n + ⋯ = ∑ n = 1 ∞ ( − 1 ) n − 1 ⋅ x n n ( 1 + x ) α = 1 + α x + α ( α − 1 ) 2 x 2 + ∘ ( x 2 ) tan ⁡ x = x + 1 3 x 3 + ∘ ( x 3 ) arcsin ⁡ x = x + 1 6 x 3 + 1 120 x 5 + ∘ ( x 5 ) arctan ⁡ x = x − 1 3 x 3 + ∘ ( x 3 ) \begin{aligned} &amp;泰勒发现,任何可导函数都可以写成\sum a_nx^n,这样,任何可导函数都具有了统一美,也可以统一计算\\ &amp;当x\to0时,就如以下常见的函数泰勒展开式,最后的\circ(x^3)被称作佩亚诺余项\\ &amp;\sin x=x-\frac16x^3+\frac{1}{5!}x^5-\frac{x^7}{7!}+\cdots+(-1)^n\frac{x^{2n+1}}{(2n+1)!}+\cdots=\sum_{n=0}^\infty(-1)^n\cdot\frac{x^{2n+1}}{(2n+1)!}\\ &amp;e^x=1+x+\frac{x^2}{2}+\frac{x^3}{6}+\cdots+\frac{x^n}{n!}+\cdots=\sum_{n=0}^{\infty}\frac{x^n}{n!}\\ &amp;\cos x=1-\frac12x^2+\frac1{24}x^4-\frac{x^6}{6!}+\cdots+(-1)^n\frac{x^{2n}}{(2n)!}+\cdots=\sum_{n=0}^\infty(-1)^n\cdot\frac{x^{2n}}{(2n)!}\\ &amp;\ln(1+x)=x-\frac12x^2+\frac13x^3-\cdots+(-1)^{n-1}\frac{x^n}n+\cdots=\sum_{n=1}^\infty(-1)^{n-1}\cdot\frac{x^n}n\\ &amp;(1+x)^\alpha=1+\alpha x+\frac{\alpha(\alpha-1)}{2}x^2+\circ(x^2)\quad\tan x=x+\frac13x^3+\circ(x^3)\\ &amp;\arcsin x=x+\frac16x^3+\frac1{120}x^5+\circ(x^5)\quad\arctan x=x-\frac13x^3+\circ(x^3)\\ \end{aligned} anxn,x0(x3)sinx=x61x3+5!1x57!x7++(1)n(2n+1)!x2n+1+=n=0(1)n(2n+1)!x2n+1ex=1+x+2x2+6x3++n!xn+=n=0n!xncosx=121x2+241x46!x6++(1)n(2n)!x2n+=n=0(1)n(2n)!x2nln(1+x)=x21x2+31x3+(1)n1nxn+=n=1(1)n1nxn(1+x)α=1+αx+2α(α1)x2+(x2)tanx=x+31x3+(x3)arcsinx=x+61x3+1201x5+(x5)arctanx=x31x3+(x3)

展开原则

1. A B 型 , 上 下 同 阶 2. A − B 型 , 幂 次 最 低 , 即 将 A , B 分 别 展 开 至 系 数 不 相 等 的 x 的 最 低 次 幂 为 止 \begin{aligned} &amp;1.\frac AB型,上下同阶\\ &amp;2.A-B型,幂次最低,即将A,B分别展开至系数不相等的x的最低次幂为止\\ \end{aligned} 1.BA2.ABA,Bx

1. lim ⁡ x → 0 arctan ⁡ x − x x 3 = lim ⁡ x → 0 x − 1 3 x 3 − x x 3 = − 1 3 2. x → 0 时 , cos ⁡ x − e − x 2 2 与 a x b 为 等 价 无 穷 小 , 求 a , b cos ⁡ x = 1 − 1 2 x 2 + 1 24 x 4 + ∘ ( x 4 )      e − x 2 2 = 1 − x 2 2 + x 4 8 + ∘ ( x 4 ) I = − 1 12 x 4 + ∘ ( x 4 )     ∴ a = − 1 12 , b = 4 3. lim ⁡ x → 0 1 + 1 2 x 2 − 1 + x 2 ( cos ⁡ x − e x 2 2 ) sin ⁡ x 2 2 = lim ⁡ x → 0 1 8 x 4 − x 4 2 = − 1 4 4. lim ⁡ x → 0 ∑ n = 1 ∞ 2 n n ! x 2 n arctan ⁡ x 2 = lim ⁡ x → 0 2 x 2 + 2 2 2 ! x 4 + … x 2 = 2 5. lim ⁡ x → 0 e x + ln ⁡ ( 1 − x ) − 1 x − arctan ⁡ x = lim ⁡ x → 0 e x + ln ⁡ ( 1 − x ) − 1 1 3 x 3 = lim ⁡ x → 0 1 + 1 2 x 2 + x + 1 6 x 3 + ∘ ( x 3 ) − x − 1 2 x 2 − 1 3 x 3 + ∘ ( x 3 ) − 1 1 3 x 3 = lim ⁡ x → 0 − 1 6 x 3 1 3 x 3 = − 1 2 \begin{aligned} 1.&amp;\color{maroon}\lim_{x\to0}\frac{\arctan x-x}{x^3}\\ =&amp;\lim_{x\to0}\frac{x-\frac13x^3-x}{x^3}=-\frac13\\ 2.&amp;\color{maroon}x\to0时,\cos x-e^{-\frac{x^2}{2}}与ax^b为等价无穷小,求a,b\\ &amp;\cos x=1-\frac12x^2+\frac1{24}x^4+\circ(x^4)\ \ \ \ e^{-\frac{x^2}{2}}=1-\frac{x^2}{2}+\frac{x^4}{8}+\circ(x^4)\\ &amp;I=-\frac1{12}x^4+\circ(x^4)\ \ \ \therefore a=-\frac1{12},b=4\\ 3.&amp;\color{maroon}\lim_{x\to0}\frac{1+\frac12x^2-\sqrt{1+x^2}}{(\cos x-e^{\frac{x^2}2})\sin\frac{x^2}2}\\ =&amp;\lim_{x\to0}\frac{\frac18x^4}{-\frac{x^4}2}=-\frac14\\ 4.&amp;\color{maroon}\lim_{x\to0}\frac{\sum_{n=1}^\infty\frac{2^n}{n!}x^{2n}}{\arctan x^2}\\ =&amp;\lim_{x\to0}\frac{2x^2+\frac{2^2}{2!}x^4+\ldots}{x^2}=2\\ 5.&amp;\color{maroon}\lim_{x\to0}\frac{e^x+\ln(1-x)-1}{x-\arctan x}\\ =&amp;\lim_{x\to0}\frac{e^x+\ln(1-x)-1}{\frac13x^3}\\ =&amp;\lim_{x\to0}\frac{1+\frac12x^2+x+\frac16x^3+\circ(x^3)-x-\frac12x^2-\frac13x^3+\circ(x^3)-1}{\frac13x^3}\\ =&amp;\lim_{x\to0}\frac{-\frac16x^3}{\frac13x^3}=-\frac12\\ \end{aligned} 1.=2.3.=4.=5.===x0limx3arctanxxx0limx3x31x3x=31x0cosxe2x2axba,bcosx=121x2+241x4+(x4)    e2x2=12x2+8x4+(x4)I=121x4+(x4)   a=121,b=4x0lim(cosxe2x2)sin2x21+21x21+x2 x0lim2x481x4=41x0limarctanx2n=1n!2nx2nx0limx22x2+2!22x4+=2x0limxarctanxex+ln(1x)1x0lim31x3ex+ln(1x)1x0lim31x31+21x2+x+61x3+(x3)x21x231x3+(x3)1x0lim31x361x3=21

中值定理

拉 格 朗 日 中 值 定 理 : 设 f ( x ) { [ a , b ] 连 续 ( a , b ) 可 导 &ThickSpace; ⟹ &ThickSpace; f ( b ) − f ( a ) = f ′ ( ξ ) ( b − a ) , ∃ ξ ∈ ( a , b ) \begin{aligned} &amp;拉格朗日中值定理:设f(x)\begin{cases}[a,b]连续\\(a,b)可导\end{cases}\implies f(b)-f(a)=f&#x27;(\xi)(b-a),\exists\xi\in(a,b)\\ \end{aligned} f(x){[a,b](a,b)f(b)f(a)=f(ξ)(ba),ξ(a,b)

1. lim ⁡ x → 0 ( 1 + x ) 2 x − e 2 [ 1 − ln ⁡ ( 1 + x ) ] x = lim ⁡ x → 0 ( 1 + x ) 2 x − e 2 x + e 2 lim ⁡ x → 0 ln ⁡ ( 1 + x ) x = lim ⁡ x → 0 e 2 ln ⁡ ( 1 + x ) / x − e 2 x + e 2 = lim ⁡ x → 0 e ξ ( 2 ln ⁡ ( 1 + x ) x − 2 ) x + e 2 = 2 e 2 lim ⁡ x → 0 ln ⁡ ( 1 + x ) x − 1 x + e 2 = 2 e 2 lim ⁡ x → 0 ln ⁡ ( 1 + x ) − x x 2 + e 2 = 2 e 2 lim ⁡ x → 0 − 1 2 x 2 x 2 + e 2 = 0 2. lim ⁡ x → ∞ ( x 6 + x 5 6 − x 6 − x 5 6 ) = lim ⁡ x → ∞ f ′ ( ξ ) ( 2 x 5 ) = lim ⁡ x → ∞ 1 6 ξ − 5 6 ( 2 x 5 ) = lim ⁡ x → ∞ 1 6 ⋅ x 6 ( − 5 6 ) ( 2 x 5 ) = lim ⁡ x → ∞ 1 6 x − 5 ( 2 x 5 ) = 1 3 \begin{aligned} 1.&amp;\color{maroon}\lim_{x\to0}\frac{(1+x)^{\frac2x}-e^2[1-\ln(1+x)]}{x}\\ =&amp;\lim_{x\to0}\frac{(1+x)^{\frac2x}-e^2}{x}+e^2\lim_{x\to0}\frac{\ln(1+x)}{x}\\ =&amp;\lim_{x\to0}\frac{e^{2\ln(1+x)/x}-e^2}{x}+e^2\\ =&amp;\lim_{x\to0}\frac{e^\xi(\frac{2\ln(1+x)}x-2)}{x}+e^2\\ =&amp;2e^2\lim_{x\to0}\frac{\frac{\ln(1+x)}{x}-1}{x}+e^2\\ =&amp;2e^2\lim_{x\to0}\frac{\ln(1+x)-x}{x^2}+e^2\\ =&amp;2e^2\lim_{x\to0}\frac{-\frac12x^2}{x^2}+e^2=0\\ 2.&amp;\color{maroon}\lim_{x\to\infty}(\sqrt[6]{x^6+x^5}-\sqrt[6]{x^6-x^5})\\ =&amp;\lim_{x\to\infty}f&#x27;(\xi)(2x^5)\\ =&amp;\lim_{x\to\infty}\frac16\xi^{-\frac56}(2x^5)\\ =&amp;\lim_{x\to\infty}\frac16\cdot x^{6(-\frac56)}(2x^5)\\ =&amp;\lim_{x\to\infty}\frac16x^{-5}(2x^5)=\frac13\\ \end{aligned} 1.======2.====x0limx(1+x)x2e2[1ln(1+x)]x0limx(1+x)x2e2+e2x0limxln(1+x)x0limxe2ln(1+x)/xe2+e2x0limxeξ(x2ln(1+x)2)+e22e2x0limxxln(1+x)1+e22e2x0limx2ln(1+x)x+e22e2x0limx221x2+e2=0xlim(6x6+x5 6x6x5 )xlimf(ξ)(2x5)xlim61ξ65(2x5)xlim61x6(65)(2x5)xlim61x5(2x5)=31

无穷小比阶

定义

lim ⁡ x → ⋅ f ( x ) g ( x ) 0 0 → { c ≠ 0 , 同 阶 无 穷 小 ( c = 1 , 等 价 无 穷 小 ) 0 , 高 阶 无 穷 小 ∞ , 低 阶 无 穷 小 如 { lim ⁡ x → 0 sin ⁡ x x = 1 lim ⁡ x → 0 x 2 x = 0 lim ⁡ x → 0 x x 2 = ∞ \begin{aligned} &amp;\lim_{x\to\cdot}\frac{f(x)}{g(x)}\underrightarrow{\quad\frac00\quad}\begin{cases}c\neq0,同阶无穷小(c=1,等价无穷小)\\0,高阶无穷小\\\infty,低阶无穷小\end{cases}\\ &amp;\qquad\qquad\quad如\begin{cases}\lim_{x\to0}\frac{\sin x}x=1\\\lim_{x\to0}\frac{x^2}x=0\\\lim_{x\to0}\frac x{x^2}=\infty\end{cases} \end{aligned} xlimg(x)f(x) 00c̸=0,(c=1,)0,,limx0xsinx=1limx0xx2=0limx0x2x=

反问题、求未知参数

1. 当 x → 0 + 时 , 下 列 ( ) 与 x 1 同 阶 A . 1 + x − 1 B . ln ⁡ ( 1 + x ) − x C . cos ⁡ ( sin ⁡ x ) − 1 D . x x − 1 [ 分 析 ] A . ( 1 + x ) 1 2 − 1 ∼ 1 2 x 1 B . ln ⁡ ( 1 + x ) − x ∼ − 1 2 x 2 C . cos ⁡ ( sin ⁡ x ) − 1 ∼ − 1 2 ( sin ⁡ x ) 2 D . x x − 1 = e x ln ⁡ x − 1 ∼ x ln ⁡ x 是 比 x 低 阶 的 无 穷 小 2. 当 x → 0 + 时 , 比 较 α , β , γ 的 阶 α = ∫ 0 x cos ⁡ t 2 d t β = ∫ 0 x 2 tan ⁡ t d t γ = ∫ 0 x sin ⁡ t 3 d t lim ⁡ x → 0 + γ α = lim ⁡ x → 0 + sin ⁡ x 3 2 ⋅ 1 2 x cos ⁡ x 2 = 1 2 lim ⁡ x → 0 + x 3 2 x 1 2 = 0 &ThickSpace; ⟹ &ThickSpace; γ = ∘ ( α ) lim ⁡ x → 0 + β γ = lim ⁡ x → 0 + tan ⁡ x − 2 x sin ⁡ x 3 2 ⋅ 1 2 x = 0 &ThickSpace; ⟹ &ThickSpace; β = ∘ ( γ ) &ThickSpace; ⟹ &ThickSpace; 由 高 阶 至 低 阶 : β → γ → α \begin{aligned} 1.&amp;\color{maroon}当x\to0^+时,下列(\quad)与x^1同阶\\ &amp;A.\sqrt{1+x}-1\quad B.\ln(1+x)-x\\ &amp;C.\cos(\sin x)-1\quad D.x^x-1\\ [分析]&amp;A.(1+x)^\frac12-1\sim\frac12x^1\\ &amp;B.\ln(1+x)-x\sim-\frac12x^2\\ &amp;C.\cos(\sin x)-1\sim-\frac12(\sin x)^2\\ &amp;D.x^x-1=e^{x\ln x}-1\sim x\ln x是比x低阶的无穷小\\ 2.&amp;\color{maroon}当x\to0^+时,比较\alpha,\beta,\gamma的阶\\ &amp;\alpha=\int_0^x\cos t^2dt\quad\beta=\int_0^{x^2}\tan\sqrt{t}dt\quad\gamma=\int_0^{\sqrt x}\sin t^3dt\\ &amp;\lim_{x\to0^+}\frac{\gamma}{\alpha}=\lim_{x\to0^+}\frac{\sin x^{\frac32}\cdot\frac1{2\sqrt x}}{\cos x^2}\\ &amp;=\frac12\lim_{x\to0^+}\frac{x^{\frac32}}{x^{\frac12}}=0\\ &amp;\implies\gamma=\circ(\alpha)\\ &amp;\lim_{x\to0^+}\frac{\beta}{\gamma}=\lim_{x\to0^+}\frac{\tan x-2x}{\sin x^{\frac32}\cdot\frac1{2\sqrt x}}=0\\ &amp;\implies \beta=\circ(\gamma)\\ &amp;\implies 由高阶至低阶:\beta\to\gamma\to\alpha\\ \end{aligned} 1.[]2.x0+x1A.1+x 1B.ln(1+x)xC.cos(sinx)1D.xx1A.(1+x)21121x1B.ln(1+x)x21x2C.cos(sinx)121(sinx)2D.xx1=exlnx1xlnxxx0+α,β,γα=0xcost2dtβ=0x2tant dtγ=0x sint3dtx0+limαγ=x0+limcosx2sinx232x 1=21x0+limx21x23=0γ=(α)x0+limγβ=x0+limsinx232x 1tanx2x=0β=(γ)βγα

存在性

具体型,但洛必达失效

用 夹 逼 准 则 [ 例 ] 记 S ( x ) = ∫ 0 x ∣ sin ⁡ t ∣ d t , ( 1 ) 证 明 当 n π ≤ x &lt; ( n + 1 ) π 时 , 2 n ≤ S ( x ) &lt; 2 ( n + 1 ) ( 2 ) 求 lim ⁡ x → + ∞ ∫ 0 x ∣ sin ⁡ t ∣ d t x ( 1 ) S ( n π ) = ∫ 0 n π ∣ sin ⁡ t ∣ d t = 2 n S ( ( n + 1 ) π ) = ∫ 0 ( n + 1 ) π ∣ sin ⁡ t ∣ d t = 2 ( n + 1 ) 又 S ′ ( x ) = ∣ sin ⁡ x ∣ ≥ 0 &ThickSpace; ⟹ &ThickSpace; S ( x ) 单 调 递 增 故 当 n π ≤ x &lt; ( n + 1 ) π 时 , 2 n = S ( n π ) ≤ S ( x ) &lt; S ( ( n + 1 ) π ) = 2 ( n + 1 ) ( 2 ) 2 n ( n + 1 ) π ≤ ∫ 0 x ∣ sin ⁡ t ∣ d t x &lt; 2 ( n + 1 ) n π x → + ∞ &ThickSpace; ⟹ &ThickSpace; n → ∞ &ThickSpace; ⟹ &ThickSpace; 由 夹 逼 准 则 得 : 2 π [ 注 ] 1. lim ⁡ x → + ∞ ∫ 0 x ∣ sin ⁡ t ∣ d t x 2. lim ⁡ x → + ∞ ∫ 0 x ∣ cos ⁡ t ∣ d t x 3. lim ⁡ x → + ∞ ∫ 0 x ( t − [ t ] ) d t x \begin{aligned} &amp;用夹逼准则\\ [例]&amp;\color{maroon}记S(x)=\int_0^x\mid \sin t\mid dt,\\ &amp;\color{maroon}(1)证明当n\pi\leq x&lt;(n+1)\pi时,2n\leq S(x)&lt;2(n+1)\\ &amp;\color{maroon}(2)求\lim_{x\to+\infty}\frac{\int_0^x\mid\sin t\mid dt}{x}\\ &amp;(1)S(n\pi)=\int_0^{n\pi}\mid \sin t\mid dt=2n\\ &amp;S((n+1)\pi)=\int_0^{(n+1)\pi}\mid\sin t\mid dt=2(n+1)\\ &amp;又S&#x27;(x)=\mid\sin x\mid\geq0\implies S(x)单调递增\\ &amp;故当n\pi\leq x&lt;(n+1)\pi时,2n=S(n\pi)\leq S(x)&lt;S((n+1)\pi)=2(n+1)\\ &amp;(2)\frac{2n}{(n+1)\pi}\leq\frac{\int_0^x\mid\sin t\mid dt}{x}&lt;\frac{2(n+1)}{n\pi}\\ &amp;x\to+\infty\implies n\to\infty\implies 由夹逼准则得:\frac2{\pi}\\ [注]&amp;1.\lim_{x\to+\infty}\frac{\int_0^x\mid\sin t\mid dt}x\\ &amp;2.\lim_{x\to+\infty}\frac{\int_0^x\mid\cos t\mid dt}x\\ &amp;3.\lim_{x\to+\infty}\frac{\int_0^x(t-[t])dt}x \end{aligned} [][]S(x)=0xsintdt,(1)nπx<(n+1)π2nS(x)<2(n+1)(2)x+limx0xsintdt(1)S(nπ)=0nπsintdt=2nS((n+1)π)=0(n+1)πsintdt=2(n+1)S(x)=sinx0S(x)nπx<(n+1)π2n=S(nπ)S(x)<S((n+1)π)=2(n+1)(2)(n+1)π2nx0xsintdt<nπ2(n+1)x+nπ21.x+limx0xsintdt2.x+limx0xcostdt3.x+limx0x(t[t])dt

抽象型——单调有界准则

若 f ( x ) 单 调 递 增 ( 递 减 ) , 且 有 上 ( 下 ) 界 &ThickSpace; ⟹ &ThickSpace; lim ⁡ x → + ∞ f ( x ) = ∃ [ 例 ] 设 x ≥ 0 , f ( x ) 满 足 f ′ ( x ) = 1 x 2 + f 2 ( x ) , f ( 0 ) = 1 , 证 明 ( 1 ) f ′ ( x ) ≤ 1 1 + x 2 , x ≥ 0 ( 2 ) lim ⁡ x → + ∞ f ( x ) 存 在 且 其 值 小 与 1 + π 2 ( 1 ) f ′ ( x ) &gt; 0 &ThickSpace; ⟹ &ThickSpace; f ( x ) 单 调 递 增 &ThickSpace; ⟹ &ThickSpace; f ( x ) ≥ f ( 0 ) = 1 故 f ′ ( x ) = 1 x 2 + f 2 ( x ) ≤ 1 x 2 + 1 ( 2 ) f ( x ) = f ( a ) + ∫ a x f ′ ( x ) d t , 故 f ( x ) = f ( 0 ) + ∫ 1 x 1 t 2 + f 2 ( t ) d t ≤ 1 + ∫ 0 x 1 t 2 + 1 d t = 1 + arctan ⁡ x &lt; 1 + π 2 , 故 f ( x ) 有 上 界 由 单 调 有 界 准 则 , 得 lim ⁡ x → + ∞ f ( x ) 存 在 且 lim ⁡ x → + ∞ f ( x ) = 1 + ∫ 0 + ∞ 1 t 2 + f 2 ( t ) d t &lt; 1 + ∫ 0 + ∞ 1 t 2 + 1 d t = 1 + π 2 \begin{aligned} &amp;若f(x)单调递增(递减),且有上(下)界\implies \lim_{x\to+\infty}f(x)=\exists\\ [例]&amp;\color{maroon}设x\geq0,f(x)满足f&#x27;(x)=\frac1{x^2+f^2(x)},f(0)=1,证明\\ &amp;\color{maroon}(1)f&#x27;(x)\leq\frac1{1+x^2},x\geq0\\ &amp;\color{maroon}(2)\lim_{x\to+\infty}f(x)存在且其值小与1+\frac{\pi}2\\ &amp;(1)f&#x27;(x)&gt;0\implies f(x)单调递增\implies f(x)\geq f(0)=1\\ &amp;故f&#x27;(x)=\frac1{x^2+f^2(x)}\leq\frac1{x^2+1}\\ &amp;(2)f(x)=f(a)+\int_a^xf&#x27;(x)dt,故f(x)=f(0)+\int_1^x\frac1{t^2+f^2(t)}dt\leq1+\int_0^x\frac1{t^2+1}dt\\ &amp;=1+\arctan x&lt;1+\frac{\pi}2,故f(x)有上界\\ &amp;由单调有界准则,得\lim_{x\to+\infty}f(x)存在且\lim_{x\to+\infty}f(x)=1+\int_0^{+\infty}\frac1{t^2+f^2(t)}dt&lt;1+\int_0^{+\infty}\frac1{t^2+1}dt=1+\frac{\pi}2\\ \end{aligned} []f(x)x+limf(x)=x0,f(x)f(x)=x2+f2(x)1,f(0)=1,(1)f(x)1+x21,x0(2)x+limf(x)1+2π(1)f(x)>0f(x)f(x)f(0)=1f(x)=x2+f2(x)1x2+11(2)f(x)=f(a)+axf(x)dt,f(x)=f(0)+1xt2+f2(t)1dt1+0xt2+11dt=1+arctanx<1+2π,f(x),x+limf(x)x+limf(x)=1+0+t2+f2(t)1dt<1+0+t2+11dt=1+2π

应用–连续与间断

1. 由 于 “ 一 切 初 等 函 数 在 其 定 义 区 域 内 必 连 续 ” , 故 只 研 究 两 类 特 殊 的 点 { 无 定 义 点 ( 间 断 ) 分 段 函 数 的 分 段 点 2. 连 续 ( 1 ) 内 点 处 : lim ⁡ x → x 0 + f ( x ) = lim ⁡ x → x 0 − f ( x ) = f ( x ) &ThickSpace; ⟹ &ThickSpace; f ( x ) 在 x 0 处 连 续 ( 2 ) 端 点 处 : { lim ⁡ x → a + f ( x ) = f ( a ) ( 左 端 点 右 连 续 ) lim ⁡ x → b − f ( x ) = f ( b ) ( 右 端 点 左 连 续 ) f ( x ) 在 ( a , b ) 内 连 续 称 f ( x ) 在 [ a , b ] 上 连 续 3. 间 断 : ( 前 提 : f ( x ) 在 x = x 0 左 右 两 侧 均 有 定 义 ) ( 1 ) 若 lim ⁡ x → x 0 + f ( x ) , lim ⁡ x → x 0 − f ( x ) 均 存 在 但 lim ⁡ x → x 0 + f ( x ) ̸ = lim ⁡ x → x 0 − f ( x ) &ThickSpace; ⟹ &ThickSpace; x 0 为 跳 跃 间 断 点 ( 2 ) lim ⁡ x → x 0 + f ( x ) , lim ⁡ x → x 0 − f ( x ) 均 存 在 且 lim ⁡ x → x 0 + f ( x ) = lim ⁡ x → x 0 − f ( x ) , 但 ̸ = f ( x ) &ThickSpace; ⟹ &ThickSpace; x 0 为 可 去 间 断 点 以 上 统 称 第 一 类 间 断 点 ( 3 ) lim ⁡ x → x 0 + f ( x ) , lim ⁡ x → x 0 − f ( x ) 至 少 一 个 不 存 在 , 且 不 存 在 = ∞ &ThickSpace; ⟹ &ThickSpace; x 0 为 无 穷 间 断 点 ( 4 ) lim ⁡ x → x 0 + f ( x ) , lim ⁡ x → x 0 − f ( x ) 至 少 一 个 不 存 在 且 不 存 在 为 振 荡 不 存 在 &ThickSpace; ⟹ &ThickSpace; x 0 为 振 荡 间 断 点 ( 3 ) ( 4 ) 属 于 第 二 类 间 断 点 \begin{aligned} 1.&amp;由于“一切初等函数在其定义区域内必连续”,故只研究两类特殊的点\begin{cases}无定义点(间断)\\分段函数的分段点\end{cases}\\ 2.&amp;连续\\ (1)&amp;内点处:\lim_{x\to x_0^+}f(x)=\lim_{x\to x_0^-}f(x)=f(x)\implies f(x)在x_0处连续\\ (2)&amp;端点处:\begin{cases}\lim_{x\to a^+}f(x)=f(a)(左端点右连续)\\\lim_{x\to b^-}f(x)=f(b)(右端点左连续)\\f(x)在(a,b)内连续\end{cases}称f(x)在[a,b]上连续\\ 3.&amp;间断:(前提:f(x)在x=x_0左右两侧均有定义)\\ (1)&amp;若\lim_{x\to x_0^+}f(x),\lim_{x\to x_0^-}f(x)均存在但\lim_{x\to x_0^+}f(x)\not=\lim_{x\to x_0^-}f(x)\implies x_0为跳跃间断点\\ (2)&amp;\lim_{x\to x_0^+}f(x),\lim_{x\to x_0^-}f(x)均存在且\lim_{x\to x_0^+}f(x)=\lim_{x\to x_0^-}f(x),但\not=f(x)\implies x_0为可去间断点\\ &amp;以上统称第一类间断点\\ (3)&amp;\lim_{x\to x_0^+}f(x),\lim_{x\to x_0^-}f(x)至少一个不存在,且不存在=\infty\implies x_0为无穷间断点\\ (4)&amp;\lim_{x\to x_0^+}f(x),\lim_{x\to x_0^-}f(x)至少一个不存在且不存在为振荡不存在\implies x_0为振荡间断点\\ &amp;(3)(4)属于第二类间断点\\ \end{aligned} 1.2.(1)(2)3.(1)(2)(3)(4){()xx0+limf(x)=xx0limf(x)=f(x)f(x)x0limxa+f(x)=f(a)()limxbf(x)=f(b)()f(x)(a,b)f(x)[a,b]:(:f(x)x=x0)xx0+limf(x),xx0limf(x)xx0+limf(x)̸=xx0limf(x)x0xx0+limf(x),xx0limf(x)xx0+limf(x)=xx0limf(x)̸=f(x)x0xx0+limf(x),xx0limf(x)=x0xx0+limf(x),xx0limf(x)x0(3)(4)

  [ 例 ] 当 x ∈ ( − 1 2 , 1 ] 时 , 确 定 f ( x ) = tan ⁡ π x ∣ x ∣ ( x 2 − 1 ) 的 间 断 点 并 判 断 其 类 型 1. { lim ⁡ x → 0 + tan ⁡ π x x ( x − 1 ) = − π lim ⁡ x → 0 − tan ⁡ π x − x ( x − 1 ) = π &ThickSpace; ⟹ &ThickSpace; x = 0 为 跳 跃 间 断 点 2. lim ⁡ x → 1 tan ⁡ π x x ( x + 1 ) ( x − 1 ) = 1 2 lim ⁡ x → 1 tan ⁡ π x x − 1 = π 2 &ThickSpace; ⟹ &ThickSpace; x = 1 为 可 去 间 断 点 3. lim ⁡ x → 1 2 tan ⁡ π x x ( x 2 − 1 ) = ∞ &ThickSpace; ⟹ &ThickSpace; x = 1 2 为 无 穷 间 断 点 \begin{aligned} \ [例]&amp;\color{maroon}当x\in(-\frac12,1]时,确定f(x)=\frac{\tan \pi x}{\mid x\mid(x^2-1)}的间断点并判断其类型\\ &amp;1.\begin{cases}\lim_{x\to0^+}\frac{\tan\pi x}{x(x^-1)}=-\pi\\\lim_{x\to0^-}\frac{\tan\pi x}{-x(x^-1)}=\pi\end{cases}\implies x=0为跳跃间断点\\ &amp;2.\lim_{x\to1}\frac{\tan\pi x}{x(x+1)(x-1)}=\frac12\lim_{x\to1}\frac{\tan\pi x}{x-1}=\frac{\pi}2\implies x=1为可去间断点\\ &amp;3.\lim_{x\to\frac12}\frac{\tan\pi x}{x(x^2-1)}=\infty\implies x=\frac12为无穷间断点\\ \end{aligned}  []x(21,1]f(x)=x(x21)tanπx1.{limx0+x(x1)tanπx=πlimx0x(x1)tanπx=πx=02.x1limx(x+1)(x1)tanπx=21x1limx1tanπx=2πx=13.x21limx(x21)tanπx=x=21

  • 50
    点赞
  • 217
    收藏
    觉得还不错? 一键收藏
  • 12
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值