【数学】张宇线代九讲笔记

行列式

1线性代数行列式

定义与性质

三大定义

几何法(本质)
定义

n 阶 行 列 式 D n = ∣ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ n × n 由 n 个 n 维 向 量 组 成 , 其 运 算 结 果 为 n 维 图 形 的 体 积 [ 注 ] 1. 结 果 是 一 个 算 式 2. 由 向 量 组 成 \begin{aligned} &n阶行列式\\ &D_n=\begin{vmatrix} a_{11}&a_{12}&\cdots&a_{1n}\\ a_{21}&a_{22}&\cdots&a_{2n}\\ \vdots&\vdots&&\vdots\\ a_{n1}&a_{n2}&\cdots&a_{nn} \end{vmatrix}_{n\times n}由n个n维向量组成,其运算结果为n维图形的体积\\ [注]&1.结果是一个算式\quad2.由向量组成 \end{aligned} []nDn=a11a21an1a12a22an2a1na2nannn×nnnn1.2.

推导

∣ a 11 a 12 a 21 a 22 ∣ = a 11 a 22 − a 12 a 21 = S p a r a l l e l o g r a m S p a r a l l e l o g r a m = l ⋅ m ⋅ sin ⁡ ( β − α ) = l ⋅ m ( sin ⁡ β cos ⁡ α − cos ⁡ β sin ⁡ α ) = a 11 a 22 − a 12 a 21 \begin{aligned} &\begin{vmatrix}a_{11}&a_{12}\\a_{21}&a_{22} \end{vmatrix}=a_{11}a_{22}-a_{12}a_{21}=S_{parallelogram}\\ &S_{parallelogram}=l\cdot m\cdot\sin(\beta-\alpha)\\ &=l\cdot m(\sin\beta\cos\alpha-\cos\beta\sin\alpha)\\ &=a_{11}a_{22}-a_{12}a_{21} \end{aligned} a11a21a12a22=a11a22a12a21=SparallelogramSparallelogram=lmsin(βα)=lm(sinβcosαcosβsinα)=a11a22a12a21
平行四边形

逆序数法

[注]顺序 12 左小右大;逆序 31 左大右小
∣ a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n ∣ = ∑ j 1 j 2 ⋯ j n a 1 j 1 a 2 j 2 ⋯ a n j n 1. 展 开 后 有 n ! 个 项 2. 有 下 标 作 顺 序 排 后 , 取 自 不 同 行 不 同 列 的 n 个 元 素 的 乘 积 3. τ ( j 1 j 2 ⋯ j n ) → { 1 ( 偶 ) − 1 ( 奇 ) \begin{aligned} &\begin{vmatrix} a_{11}&a_{12}&\cdots&a_{1n}\\ a_{21}&a_{22}&\cdots&a_{2n}\\ \vdots&\vdots&&\vdots\\ a_{n1}&a_{n2}&\cdots&a_{nn} \end{vmatrix}=\sum_{j_1j_2\cdots j_n}a_{1j_1}a_{2j_2}\cdots a_{nj_n}\\ &1.展开后有n!个项\\ &2.有下标作顺序排后,取自不同行不同列的n个元素的乘积\\ &3.\tau(j_1j_2\cdots j_n)\to\begin{cases}1(偶)\\-1(奇)\end{cases}\\ \end{aligned} a11a21an1a12a22an2a1na2nann=j1j2jna1j1a2j2anjn1.n!2.n3.τ(j1j2jn){1()1()

KaTeX parse error: Expected & or \\ or \cr or \end at position 529: …a_{22}&a_{33}\\\̲e̲n̲c̲l̲o̲s̲e̲{horizontalstri…

展开式法
余子式

KaTeX parse error: Expected & or \\ or \cr or \end at position 26: …igned} &M_{ij}=\̲r̲e̲q̲u̲i̲r̲e̲{enclose}\begin…

代数余子式

A i j = ( − 1 ) i + j M i j ( − 1 ) i + j A i j = ( − 1 ) 2 ( i + j ) M i j M i j = ( − 1 ) i + j A i j \begin{aligned} A_{ij}&=(-1)^{i+j}M_{ij}\\ (-1)^{i+j}A_{ij}&=(-1)^{2(i+j)}M_{ij}\\ M_{ij}&=(-1)^{i+j}A_{ij} \end{aligned} Aij(1)i+jAijMij=(1)i+jMij=(1)2(i+j)Mij=(1)i+jAij

展开式(化出尽可能多的0元素)

D n = ∣ A ∣ = { a i 1 A i 1 + a i 2 A i 2 + ⋯ + a i n A i n , 按第i行展开 a 1 j A 1 j + a 2 j A 2 j + ⋯ + a n j A n j , 按第j列展开 如 ∣ 5 2 1 1 2 5 34 1 34 ∣ = 1 ⋅ ( − 1 ) ∣ 2 1 1 34 ∣ + 2 ⋅ 1 ∣ 5 1 34 34 ∣ + 5 ⋅ ( − 1 ) ∣ 5 2 34 1 ∣ = − 67 + 2 ⋅ 136 + 315 = 520 再 如 ∣ 我 0 生 0 有 0 你 0 幸 ∣ = 有 ⋅ ∣ 我 生 你 幸 ∣ = 有 ( 我 ⋅ 幸 − 生 ⋅ 你 ) = 我 有 幸 − 生 有 你 \begin{aligned} &D_n=\mid A\mid=\begin{cases}a_{i1}A_{i1}+a_{i2}A_{i2}+\cdots+a_{in}A_{in},&\text{按第i行展开}\\a_{1j}A_{1j}+a_{2j}A_{2j}+\cdots+a_{nj}A_{nj},&\text{按第j列展开}\end{cases}\\ &如\begin{vmatrix}5&2&1\\1&2&5\\34&1&34 \end{vmatrix}=1\cdot(-1)\begin{vmatrix}2&1\\1&34 \end{vmatrix}+2\cdot1\begin{vmatrix}5&1\\34&34 \end{vmatrix}+5\cdot(-1)\begin{vmatrix}5&2\\34&1 \end{vmatrix}\\ &=-67+2\cdot136+315=520\\ &再如\begin{vmatrix}我&0&生\\0&有&0\\你&0&幸 \end{vmatrix}=有\cdot\begin{vmatrix}我&生\\你&幸 \end{vmatrix}\\ &=有(我\cdot幸-生\cdot你)=我有幸-生有你 \end{aligned} Dn=A={ai1Ai1+ai2Ai2++ainAin,a1jA1j+a2jA2j++anjAnj,按第i行展开按第j列展开51342211534=1(1)21134+21534134+5(1)53421=67+2136+315=5200000==()=

  [ 注 ] 1 阶 ∣ a 11 ∣ = a 11 2 阶 ∣ a 11 a 12 a 21 a 22 ∣ = a 11 a 22 − a 12 a 21 3 阶 ∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ = a 11 a 22 a 33 + a 12 a 23 a 31 + a 13 a 21 a 32 − a 13 a 22 a 31 − a 11 a 23 a 32 − a 12 a 21 a 33 \begin{aligned} \ [注]&\color{grey}1阶\mid a_{11}\mid=a_{11}\\ &\color{grey}2阶\begin{vmatrix}a_{11}&a_{12}\\a_{21}&a_{22} \end{vmatrix}=a_{11}a_{22}-a_{12}a_{21}\\ &\color{grey}3阶\begin{vmatrix}a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33} \end{vmatrix}=a_{11}a_{22}a_{33}+a_{12}a_{23}a_{31}+a_{13}a_{21}a_{32}-a_{13}a_{22}a_{31}-a_{11}a_{23}a_{32}-a_{12}a_{21}a_{33} \end{aligned}  []1a11=a112a11a21a12a22=a11a22a12a213a11a21a31a12a22a32a13a23a33=a11a22a33+a12a23a31+a13a21a32a13a22a31a11a23a32a12a21a33

七大性质

1. 行 列 互 换 , 其 值 不 变 , 即 ∣ A ∣ = ∣ A T ∣ 2. 行 列 式 中 某 行 ( 列 ) 元 素 为 0 , 则 行 列 式 为 0 ∣ a 11 a 12 0 0 ∣ = 0 3. 行 列 式 中 的 两 行 ( 列 ) 元 素 相 等 或 对 应 成 比 例 , 则 行 列 式 为 0 ∣ a 11 a 12 k a 11 k a 12 ∣ = 0 4. 行 列 式 中 某 行 ( 列 ) 元 素 均 是 两 个 元 素 之 和 , 则 可 拆 成 两 个 行 列 式 之 和 ∣ a 11 a 12 b 1 + c 1 b 2 + c 2 ∣ = ∣ a 11 a 12 b 1 b 2 ∣ + ∣ a 11 a 12 c 1 c 2 ∣ 5. 行 列 式 中 两 行 ( 列 ) 互 换 , 行 列 式 的 值 反 号 ( 互 换 性 质 ) ∣ a 11 a 12 a 21 a 22 ∣ = − ∣ a 21 a 22 a 11 a 12 ∣ 6. 行 列 式 中 某 行 ( 列 ) 元 素 有 公 因 子 k ( k ≠ 0 ) , 则 k 可 提 到 行 列 式 外 面 ( 倍 乘 性 质 ) ∣ k a 11 k a 12 a 21 a 22 ∣ = k ∣ a 11 a 12 a 21 a 22 ∣ 7. 行 列 式 中 某 行 ( 列 ) 的 k 倍 加 到 另 一 行 ( 列 ) , 行 列 式 的 值 不 变 ( 倍 加 性 质 ) ∣ a 11 a 12 a 21 a 22 ∣ = ∣ a 11 a 12 k a 11 + a 21 k a 12 + a 22 ∣ = ∣ a 11 a 12 k a 11 k a 12 ∣ + ∣ a 11 a 12 a 21 a 22 ∣ \begin{aligned} 1.& 行列互换,其值不变,即\mid A\mid=\mid A^T\mid\\ 2.& 行列式中某行(列)元素为0,则行列式为0\\ &\begin{vmatrix}a_{11}&a_{12}\\0&0 \end{vmatrix}=0\\ 3.& 行列式中的两行(列)元素相等或对应成比例,则行列式为0\\ &\begin{vmatrix}a_{11}&a_{12}\\ka_{11}&ka_{12} \end{vmatrix}=0\\ 4.& 行列式中某行(列)元素均是两个元素之和,则可拆成两个行列式之和\\ &\begin{vmatrix}a_{11}&a_{12}\\b_1+c_1&b_2+c_2 \end{vmatrix}=\begin{vmatrix}a_{11}&a_{12}\\b_1&b_2 \end{vmatrix}+\begin{vmatrix}a_{11}&a_{12}\\c_1&c_2 \end{vmatrix}\\ 5.& 行列式中两行(列)互换,行列式的值反号(互换性质)\\ &\begin{vmatrix}a_{11}&a_{12}\\a_{21}&a_{22} \end{vmatrix}=-\begin{vmatrix}a_{21}&a_{22}\\a_{11}&a_{12} \end{vmatrix}\\ 6.& 行列式中某行(列)元素有公因子k(k\neq0),则k可提到行列式外面(倍乘性质)\\ &\begin{vmatrix}ka_{11}&ka_{12}\\a_{21}&a_{22} \end{vmatrix}=k\begin{vmatrix}a_{11}&a_{12}\\a_{21}&a_{22} \end{vmatrix}\\ 7.& 行列式中某行(列)的k倍加到另一行(列),行列式的值不变(倍加性质)\\ &\begin{vmatrix}a_{11}&a_{12}\\a_{21}&a_{22} \end{vmatrix}=\begin{vmatrix}a_{11}&a_{12}\\ka_{11}+a_{21}&ka_{12}+a_{22} \end{vmatrix}=\begin{vmatrix}a_{11}&a_{12}\\ka_{11}&ka_{12} \end{vmatrix}+\begin{vmatrix}a_{11}&a_{12}\\a_{21}&a_{22} \end{vmatrix} \end{aligned} 1.2.3.4.5.6.7.A=AT00a110a120=00a11ka11a12ka12=0a11b1+c1a12b2+c2=a11b1a12b2+a11c1a12c2a11a21a12a22=a21a11a22a12k(k̸=0),kka11a21ka12a22=ka11a21a12a22ka11a21a12a22=a11ka11+a21a12ka12+a22=a11ka11a12ka12+a11a21a12a22

计算

具体型行列式

化为“12+1”

加边法

递推法

数学归纳法

化为“12+1”

1.主对角线行列式
∣ a 11 ⋯ a 1 n ⋮ ⋱ ⋮ 0 ⋯ a n n ∣ = ∣ a 11 ⋯ 0 ⋮ ⋱ ⋮ a n 1 ⋯ a n n ∣ = ∣ a 11 ⋯ 0 ⋮ ⋱ ⋮ 0 ⋯ a n n ∣ = a 11 ⋯ a n n \begin{aligned} &\begin{vmatrix}a_{11}&\cdots&a_{1n}\\\vdots&\ddots&\vdots\\0&\cdots&a_{nn} \end{vmatrix}=\begin{vmatrix}a_{11}&\cdots&0\\\vdots&\ddots&\vdots\\a_{n1}&\cdots&a_{nn} \end{vmatrix}=\begin{vmatrix}a_{11}&\cdots&0\\\vdots&\ddots&\vdots\\0&\cdots&a_{nn} \end{vmatrix}=a_{11}\cdots a_{nn}\\ \end{aligned} a110a1nann=a11an10ann=a1100ann=a11ann

2.副对角线行列式
∣ a 11 ⋯ a 1 n ⋮ ⋱ ⋮ a n 1 ⋯ 0 ∣ = ∣ 0 ⋯ a 1 n ⋮ ⋱ ⋮ a n 1 ⋯ a n n ∣ = ∣ 0 ⋯ a 1 n ⋮ ⋱ ⋮ a n 1 ⋯ 0 ∣ = ( − 1 ) n ( n − 1 ) 2 ⋅ ( a 1 n ⋯ a n 1 ) \begin{aligned} &\begin{vmatrix}a_{11}&\cdots&a_{1n}\\\vdots&\ddots&\vdots\\a_{n1}&\cdots&0 \end{vmatrix}=\begin{vmatrix}0&\cdots&a_{1n}\\\vdots&\ddots&\vdots\\a_{n1}&\cdots&a_{nn} \end{vmatrix}=\begin{vmatrix}0&\cdots&a_{1n}\\\vdots&\ddots&\vdots\\a_{n1}&\cdots&0 \end{vmatrix}=(-1)^{\frac{n(n-1)}2}\cdot(a_{1n}\cdots a_{n1})\\ \end{aligned} a11an1a1n0=0an1a1nann=0an1a1n0=(1)2n(n1)(a1nan1)

3.拉普拉斯展开式
设A为m阶矩阵,B为n阶矩阵,则
∣ A O O B ∣ = ∣ A C O B ∣ = ∣ A O C B ∣ = ∣ A ∣ ∣ B ∣ ∣ O A B O ∣ = ∣ C A B O ∣ = ∣ O A B C ∣ = ( − 1 ) m n ∣ A ∣ ∣ B ∣ \begin{aligned} &\begin{vmatrix}A&O\\O&B \end{vmatrix}=\begin{vmatrix}A&C\\O&B \end{vmatrix}=\begin{vmatrix}A&O\\C&B \end{vmatrix}=\mid A\mid\mid B\mid\\ &\begin{vmatrix}O&A\\B&O \end{vmatrix}=\begin{vmatrix}C&A\\B&O \end{vmatrix}=\begin{vmatrix}O&A\\B&C \end{vmatrix}=(-1)^{mn}\mid A\mid\mid B\mid\\ \end{aligned} AOOB=AOCB=ACOB=ABOBAO=CBAO=OBAC=(1)mnAB

4.范德蒙德行列式
V m = ∣ 1 1 ⋯ 1 x 1 x 2 ⋯ x n x 1 2 x 2 2 ⋯ x n 2 ⋮ ⋮ ⋱ ⋮ x 1 n − 1 x 2 n − 1 ⋯ x m n − 1 ∣ n × n = ( x n − x 1 ) ( x n − x 2 ) ⋯ ( x n − x n − 1 ) ( x n − 1 − x 1 ) ( x n − 1 − x 2 ) ⋯ ( x n − 1 − x n − 2 ) ⋯ ( x 2 − x 1 ) 1. 盯 着 第 二 行 2. 大 的 减 小 的 \begin{aligned} V_m=&\begin{vmatrix}1&1&\cdots&1\\x_1&x_2&\cdots&x_n\\x_1^2&x_2^2&\cdots&x_n^2\\\vdots&\vdots&\ddots&\vdots\\x_1^{n-1}&x_2^{n-1}&\cdots&x_m^{n-1} \end{vmatrix}_{n\times n}\\ =&(x_n-x_1)(x_n-x_2)\cdots(x_n-x_{n-1})\\ &(x_{n-1}-x_1)(x_{n-1}-x_2)\cdots(x_{n-1}-x_{n-2})\\ &\cdots(x_2-x_1)\\ &\color{grey}1.盯着第二行\quad2.大的减小的\\ \end{aligned} Vm==1x1x12x1n11x2x22x2n11xnxn2xmn1n×n(xnx1)(xnx2)(xnxn1)(xn1x1)(xn1x2)(xn1xn2)(x2x1)1.2.

  [ 例 1 ] ∣ b + c c + a a + b a b c a 2 b 2 c 2 ∣ = ∣ a + b + c a + b + c a + b + c a b c a 2 b 2 c 2 ∣ = ( a + b + c ) ∣ 1 1 1 a b c a 2 b 2 c 2 ∣ = ( a + b + c ) ( c − a ) ( c − b ) ( b − a ) [ 例 2 ] n 阶 行 列 式 ∣ a b 0 ⋯ 0 0 0 a b ⋯ 0 0 0 0 a ⋯ 0 0 ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 0 0 0 ⋯ a b b 0 0 ⋯ 0 a ∣ 已 知 0 元 素 很 多 的 行 ( 列 )    ⟹    D n = a ⋅ ( − 1 ) 1 + 1 ⋅ ∣ a b ⋯ 0 0 a ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ a ∣ + b ⋅ ( − 1 ) n + 1 ∣ b 0 ⋯ 0 a b ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ b ∣ = a n + ( − 1 ) n + 1 b n [ 例 3 ] n 阶 行 列 式 ∣ 0 1 1 ⋯ 1 1 1 0 1 ⋯ 1 1 1 1 0 ⋯ 1 1 ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 1 1 1 ⋯ 0 1 1 1 1 ⋯ 1 0 ∣ 行 ( 列 ) 和 相 等    ⟹    创 造 0 元 素 很 多 的 行 ( 列 ) D n = ∣ n − 1 n − 1 ⋯ n − 1 ∗ ∗ ⋯ ∗ ∣ = ( n − 1 ) ∣ 1 1 1 ⋯ 1 1 1 0 1 ⋯ 1 1 1 1 0 ⋯ 1 1 ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 1 1 1 ⋯ 0 1 1 1 1 ⋯ 1 0 ∣ = ( n − 1 ) ∣ 1 1 1 ⋯ 1 1 0 − 1 0 ⋯ 0 0 0 0 − 1 ⋯ 0 0 ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 0 0 0 ⋯ − 1 0 0 0 0 ⋯ 0 − 1 ∣ = ( n − 1 ) ( − 1 ) n − 1 [ 例 4 ] D 4 = ∣ 1 + a 1 1 1 1 1 − a 1 1 1 1 1 + b 1 1 1 1 1 − b ∣ = ∣ a a 0 0 1 1 − a 0 1 0 0 b b 1 1 1 1 − b ∣ = a b ∣ 1 1 0 0 1 1 − a 0 0 0 0 1 1 1 1 1 1 − b ∣ = a b ∣ A O C B ∣ = a b ∣ A ∣ ∣ B ∣ = a b ( − a ) ( − b ) = a 2 b 2 [ 例 5 ] 求 f ( x ) = ∣ 1 1 1 1 1 3 9 27 1 − 2 4 − 8 1 x x 2 x 3 ∣ = 0 的 根 f ( x ) = ∣ 1 1 1 1 1 3 − 2 x 1 9 4 x 2 1 27 − 8 x 3 ∣ = ( x − 1 ) ( x − 3 ) ( x + 2 ) ( − 2 − 1 ) ( − 2 − 3 ) ( 3 − 1 ) = 0    ⟹    x 1 = 1 , x 2 = 3 , x 3 = − 2 \begin{aligned} \ [例1]&\color{maroon}\begin{vmatrix}b+c&c+a&a+b\\a&b&c\\a^2&b^2&c^2 \end{vmatrix}\\ =&\begin{vmatrix}a+b+c&a+b+c&a+b+c\\a&b&c\\a^2&b^2&c^2 \end{vmatrix}=(a+b+c)\begin{vmatrix}1&1&1\\a&b&c\\a^2&b^2&c^2 \end{vmatrix}=(a+b+c)(c-a)(c-b)(b-a)\\ [例2]&\color{maroon}n阶行列式\begin{vmatrix}a&b&0&\cdots&0&0\\0&a&b&\cdots&0&0\\0&0&a&\cdots&0&0\\\vdots&\vdots&\vdots&\ddots&\vdots&\vdots\\0&0&0&\cdots&a&b\\b&0&0&\cdots&0&a \end{vmatrix}\\ &已知0元素很多的行(列)\implies\\ &D_n=a\cdot(-1)^{1+1}\cdot\begin{vmatrix}a&b&\cdots&0\\0&a&\cdots&0\\\vdots&\vdots&\ddots&\vdots\\0&0&\cdots&a \end{vmatrix}+b\cdot(-1)^{n+1}\begin{vmatrix}b&0&\cdots&0\\a&b&\cdots&0\\\vdots&\vdots&\ddots&\vdots\\0&0&\cdots&b \end{vmatrix}=a^n+(-1)^{n+1}b^n\\ [例3]&\color{maroon}n阶行列式\begin{vmatrix}0&1&1&\cdots&1&1\\1&0&1&\cdots&1&1\\1&1&0&\cdots&1&1\\\vdots&\vdots&\vdots&\ddots&\vdots&\vdots\\1&1&1&\cdots&0&1\\1&1&1&\cdots&1&0 \end{vmatrix}\\ &行(列)和相等\implies创造0元素很多的行(列)\\ &D_n=\begin{vmatrix}n-1&n-1&\cdots&n-1\\*&*&\cdots&* \end{vmatrix}=(n-1)\begin{vmatrix}1&1&1&\cdots&1&1\\1&0&1&\cdots&1&1\\1&1&0&\cdots&1&1\\\vdots&\vdots&\vdots&\ddots&\vdots&\vdots\\1&1&1&\cdots&0&1\\1&1&1&\cdots&1&0 \end{vmatrix}\\ &=(n-1)\begin{vmatrix}1&1&1&\cdots&1&1\\0&-1&0&\cdots&0&0\\0&0&-1&\cdots&0&0\\\vdots&\vdots&\vdots&\ddots&\vdots&\vdots\\0&0&0&\cdots&-1&0\\0&0&0&\cdots&0&-1 \end{vmatrix}=(n-1)(-1)^{n-1}\\ [例4]&\color{maroon}D_4=\begin{vmatrix}1+a&1&1&1\\1&1-a&1&1\\1&1&1+b&1\\1&1&1&1-b \end{vmatrix}\\ &=\begin{vmatrix}a&a&0&0\\1&1-a&0&1\\0&0&b&b\\1&1&1&1-b \end{vmatrix}=ab\begin{vmatrix}1&1&0&0\\1&1-a&0&0\\0&0&1&1\\1&1&1&1-b \end{vmatrix}\\ &=ab\begin{vmatrix}A&O\\C&B \end{vmatrix}=ab\mid A\mid\mid B\mid=ab(-a)(-b)=a^2b^2\\ [例5]&\color{maroon}求f(x)=\begin{vmatrix}1&1&1&1\\1&3&9&27\\1&-2&4&-8\\1&x&x^2&x^3 \end{vmatrix}=0的根\\ &f(x)=\begin{vmatrix}1&1&1&1\\1&3&-2&x\\1&9&4&x^2\\1&27&-8&x^3 \end{vmatrix}=(x-1)(x-3)(x+2)(-2-1)(-2-3)(3-1)=0\\ &\implies x_1=1,x_2=3,x_3=-2\\ \end{aligned}  [1]=[2][3][4][5]b+caa2c+abb2a+bcc2a+b+caa2a+b+cbb2a+b+ccc2=(a+b+c)1aa21bb21cc2=(a+b+c)(ca)(cb)(ba)na000bba0000ba00000a0000ba0Dn=a(1)1+1a00ba000a+b(1)n+1ba00b000b=an+(1)n+1bnn01111101111101111101111100Dn=n1n1n1=(n1)1111110111110111110111110=(n1)1000011000101001001010001=(n1)(1)n1D4=1+a11111a11111+b11111b=a101a1a0100b101b1b=ab110111a0100110011b=abACOB=abAB=ab(a)(b)=a2b2f(x)=1111132x194x21278x3=0f(x)=11111392712481xx2x3=(x1)(x3)(x+2)(21)(23)(31)=0x1=1,x2=3,x3=2

加边法

∣ A ∣ = ∣ 1 − − − ⋯ − − − 0 a 11 ⋯ a 1 n ⋮ ⋮ ⋱ ⋮ 0 a n 1 ⋯ a n n ∣ = 1 ⋅ ∣ A ∣ [ 例 ] D n = ∣ 1 + x 1 2 x 1 x 2 ⋯ x 1 x n x 2 x 1 1 + x 2 2 ⋯ x 2 x n ⋮ ⋮ ⋱ ⋮ x n x 1 x n x 2 ⋯ 1 + x n 2 ∣ = ∣ 1 x 1 x 2 ⋯ x n 0 1 + x 1 2 x 1 x 2 ⋯ x 1 x n 0 x 2 x 1 1 + x 2 2 ⋯ x 2 x n ⋮ ⋮ ⋮ ⋱ ⋮ 0 x n x 1 x n x 2 ⋯ 1 + x n 2 ∣ = ∣ 1 x 1 x 2 ⋯ x n − x 1 1 0 ⋯ 0 − x 2 0 1 ⋯ 0 ⋮ ⋮ ⋮ ⋱ ⋮ − x n 0 0 ⋯ 1 ∣ = ∣ 1 + ∑ i = 1 n x i 2 x 1 x 2 ⋯ x n 0 1 0 ⋯ 0 0 0 1 ⋯ 0 ⋮ ⋮ ⋮ ⋱ ⋮ 0 0 0 ⋯ 1 ∣ = 1 + ∑ i = 1 n x i 2 \begin{aligned} &\mid A\mid=\begin{vmatrix}1&---&\cdots&---\\0&a_{11}&\cdots&a_{1n}\\\vdots&\vdots&\ddots&\vdots\\0&a_{n1}&\cdots&a_{nn} \end{vmatrix}=1\cdot\mid A\mid\\ [例]&\color{maroon}D_n=\begin{vmatrix}1+x_1^2&x_1x_2&\cdots&x_1x_n\\x_2x_1&1+x_2^2&\cdots&x_2x_n\\\vdots&\vdots&\ddots&\vdots\\x_nx_1&x_nx_2&\cdots&1+x_n^2 \end{vmatrix}\\ &=\begin{vmatrix}1&x_1&x_2&\cdots&x_n\\0&1+x_1^2&x_1x_2&\cdots&x_1x_n\\0&x_2x_1&1+x_2^2&\cdots&x_2x_n\\\vdots&\vdots&\vdots&\ddots&\vdots\\0&x_nx_1&x_nx_2&\cdots&1+x_n^2 \end{vmatrix}=\begin{vmatrix}1&x_1&x_2&\cdots&x_n\\-x_1&1&0&\cdots&0\\-x_2&0&1&\cdots&0\\\vdots&\vdots&\vdots&\ddots&\vdots\\-x_n&0&0&\cdots&1 \end{vmatrix}\\ &=\begin{vmatrix}1+\sum_{i=1}^nx_i^2&x_1&x_2&\cdots&x_n\\0&1&0&\cdots&0\\0&0&1&\cdots&0\\\vdots&\vdots&\vdots&\ddots&\vdots\\0&0&0&\cdots&1 \end{vmatrix}=1+\sum^n_{i=1}x_i^2 \end{aligned} []A=100a11an1a1nann=1ADn=1+x12x2x1xnx1x1x21+x22xnx2x1xnx2xn1+xn2=1000x11+x12x2x1xnx1x2x1x21+x22xnx2xnx1xnx2xn1+xn2=1x1x2xnx1100x2010xn001=1+i=1nxi2000x1100x2010xn001=1+i=1nxi2

递推法

  [ 例 1 ] D n = ∣ b − 1 0 ⋯ 0 0 0 b − 1 ⋯ 0 0 ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 0 0 0 ⋯ b − 1 a n a n − 1 a n − 2 ⋯ a 2 b + a 1 ∣ [ 分 析 ] D n 与 D n − 1 只 是 阶 数 不 同 , 规 律 相 同 D n = b D n − 1 + a n ( − 1 ) n + 1 ∣ − 1 0 ⋯ 0 b − 1 ⋯ ⋮ ⋮ ⋮ ⋱ ⋮ 0 ⋯ b − 1 ∣ = b D n − 1 + a n ( − 1 ) 2 n = b D n − 1 + a n 故 D n = b D n − 1 + a n = b ( b D n − 2 + a n − 1 ) + a n = b 2 D n − 2 + b a n − 1 + a n = b 2 ( b D n − 3 + a n − 2 ) + a n − 1 b + a n = b 3 D n − 3 + b 2 a n − 2 + b a n − 1 + a n = ⋯ = b n − 1 D 1 + b n − 2 a 2 + ⋯ + b a n − 1 + b 0 a n = b n − 1 ( b + a 1 ) + b n − 2 a 2 + ⋯ + b 0 a n = b n + b n − 1 a 1 + b n − 2 a 2 + ⋯ + b 0 a n [ 例 2 ] D 4 = ∣ λ − 1 0 0 0 λ − 1 0 0 0 λ − 1 4 3 2 λ + 1 ∣ = ‾ λ 4 + λ 3 + 2 λ 2 + 3 λ + 4 [ 例 3 ] D n = ∣ 2 − 1 0 ⋯ 0 0 0 2 − 1 ⋯ 0 0 ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 0 0 0 ⋯ 2 − 1 n n − 1 n − 2 ⋯ 2 3 ∣ = 2 n + 2 n − 1 + 2 n − 2 ⋅ 2 + ⋯ + n [ 例 4 ] 证 明 D n = ∣ 2 a 1 0 ⋯ 0 0 a 2 2 a 1 ⋯ 0 0 ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ 0 0 0 ⋯ 2 a 1 0 0 0 ⋯ a 2 2 a ∣ = ( n + 1 ) a n ( 异 爪 型 ) D n = 2 a ⋅ D n − 1 + a 2 ( − 1 ) 2 + 1 ⋅ D n − 2 = 2 a D n − 1 − a 2 D n − 2    ⟹    D n − a D n − 1 = a D n − 1 − a 2 D n − 2 = a ( D n − 1 − a D n − 2 ) = a 2 ( D n − 2 − a D n − 3 ) = ⋯ = a n − 2 ( D 2 − a D 1 ) = a n D 1 = 2 a , D 2 = 3 a 2    ⟹    D n − a D n − 1 = a n    ⟹    D n = a D n − 1 + a n = a ( a D n − 2 + a n − 1 ) + a n = a 2 D n − 2 + 2 a n = a 2 ( a D n − 3 + a n − 2 ) + 2 a n = a 3 D n − 3 + 3 a n = ⋯ = a n − 1 D 1 + ( n − 1 ) a n = a n − 1 ⋅ 2 a + ( n − 1 ) a n = 2 a n + ( n − 1 ) a n = ( n + 1 ) a n \begin{aligned} \ [例1]&\color{maroon}D_n=\begin{vmatrix}b&-1&0&\cdots&0&0\\0&b&-1&\cdots&0&0\\\vdots&\vdots&\vdots&\ddots&\vdots&\vdots\\0&0&0&\cdots&b&-1\\a_n&a_{n-1}&a_{n-2}&\cdots&a_2&b+a_1 \end{vmatrix}\\ &[分析]D_n与D_{n-1}只是阶数不同,规律相同\\ &D_n=bD_{n-1}+a_n(-1)^{n+1}\begin{vmatrix}-1&0&\cdots&0\\b&-1&\cdots&\vdots\\\vdots&\vdots&\ddots&\vdots\\0&\cdots&b&-1 \end{vmatrix}\\ &=bD_{n-1}+a_n(-1)^{2n}=bD_{n-1}+a_n\\ &故D_n=bD_{n-1}+a_n=b(bD_{n-2}+a_{n-1})+a_n\\ &=b^2D_{n-2}+ba_{n-1}+a_n=b^2(bD_{n-3}+a_{n-2})+a_{n-1}b+a_n\\ &=b^3D_{n-3}+b^2a_{n-2}+ba_{n-1}+a_n=\cdots=b^{n-1}D_1+b^{n-2}a_2+\cdots+ba_{n-1}+b^0a_n\\ &=b^{n-1}(b+a_1)+b^{n-2}a_2+\cdots+b^0a_n=b^n+b^{n-1}a_1+b^{n-2}a_2+\cdots+b^0a_n\\ [例2]&\color{maroon}D_4=\begin{vmatrix}\lambda&-1&0&0\\0&\lambda&-1&0\\0&0&\lambda&-1\\4&3&2&\lambda+1 \end{vmatrix}=\underline{\quad}\\ &\lambda^4+\lambda^3+2\lambda^2+3\lambda+4\\ [例3]&\color{maroon}D_n=\begin{vmatrix}2&-1&0&\cdots&0&0\\0&2&-1&\cdots&0&0\\\vdots&\vdots&\vdots&\ddots&\vdots&\vdots\\0&0&0&\cdots&2&-1\\n&n-1&n-2&\cdots&2&3 \end{vmatrix}\\ &=2^n+2^{n-1}+2^{n-2}\cdot2+\cdots+n\\ [例4]&\color{maroon}证明D_n=\begin{vmatrix}2a&1&0&\cdots&0&0\\a^2&2a&1&\cdots&0&0\\\vdots&\vdots&\vdots&\ddots&\vdots&\vdots\\0&0&0&\cdots&2a&1\\0&0&0&\cdots&a^2&2a\end{vmatrix}=(n+1)a^n(异爪型)\\ &D_n=2a\cdot D_{n-1}+a^2(-1)^{2+1}\cdot D_{n-2}=2aD_{n-1}-a^2D_{n-2}\\ &\implies D_n-aD_{n-1}=aD_{n-1}-a^2D_{n-2}=a(D_{n-1}-aD_{n-2})\\ &=a^2(D_{n-2}-aD_{n-3})=\cdots=a^{n-2}(D_2-aD_1)=a^n\\ &D_1=2a,D_2=3a^2\implies D_n-aD_{n-1}=a^n\\ &\implies D_n=aD_{n-1}+a^n=a(aD_{n-2}+a^{n-1})+a^n\\ &=a^2D_{n-2}+2a^n=a^2(aD_{n-3}+a^{n-2})+2a^n\\ &=a^3D_{n-3}+3a^n=\cdots=a^{n-1}D_1+(n-1)a^n\\ &=a^{n-1}\cdot 2a+(n-1)a^n=2a^n+(n-1)a^n=(n+1)a^n\\ \end{aligned}  [1][2][3][4]Dn=b00an1b0an1010an200ba2001b+a1[]DnDn1Dn=bDn1+an(1)n+11b001b01=bDn1+an(1)2n=bDn1+anDn=bDn1+an=b(bDn2+an1)+an=b2Dn2+ban1+an=b2(bDn3+an2)+an1b+an=b3Dn3+b2an2+ban1+an==bn1D1+bn2a2++ban1+b0an=bn1(b+a1)+bn2a2++b0an=bn+bn1a1+bn2a2++b0anD4=λ0041λ0301λ2001λ+1=λ4+λ3+2λ2+3λ+4Dn=200n120n1010n200220013=2n+2n1+2n22++nDn=2aa20012a000100002aa20012a=(n+1)an()Dn=2aDn1+a2(1)2+1Dn2=2aDn1a2Dn2DnaDn1=aDn1a2Dn2=a(Dn1aDn2)=a2(Dn2aDn3)==an2(D2aD1)=anD1=2a,D2=3a2DnaDn1=anDn=aDn1+an=a(aDn2+an1)+an=a2Dn2+2an=a2(aDn3+an2)+2an=a3Dn3+3an==an1D1+(n1)an=an12a+(n1)an=2an+(n1)an=(n+1)an

归纳法

1. 第 一 归 纳 法 ( 1 ) 验 n = 1 成 立 ( 2 ) 设 n − 1 成 立 ( 3 ) 证 n 成 立 适 用 于 “ 一 阶 差 ” 2. 第 二 归 纳 法 ( 1 ) 验 n = 1 , 2 均 成 立 ( 2 ) 设 n &lt; k 成 立 ( 3 ) 证 n = k 成 立 适 用 于 “ 二 阶 差 ” \begin{aligned} 1.&amp;第一归纳法\\ &amp;(1)验n=1成立\\ &amp;(2)设n-1成立\\ &amp;(3)证n成立\\ &amp;适用于“一阶差”\\ 2.&amp;第二归纳法\\ &amp;(1)验n=1,2均成立\\ &amp;(2)设n&lt;k 成立\\ &amp;(3)证n=k成立\\ &amp;适用于“二阶差”\\ \end{aligned} 1.2.(1)n=1(2)n1(3)n(1)n=12(2)n<k(3)n=k

  [ 例 1 ] 证 V n = ∣ 1 1 ⋯ 1 x 1 x 2 ⋯ x n x 1 2 x 2 2 ⋯ x n 2 ⋮ ⋮ ⋱ ⋮ x 1 n − 1 x 2 n − 1 ⋯ x n n − 1 ∣ = ∏ 1 ≤ i &lt; j ≤ n ( x j − x i ) [ 分 析 ] 用 上 一 行 的 − x 1 倍 加 到 下 一 行 V n = ∣ 1 1 1 ⋯ 1 0 ( x 2 − x 1 ) ( x 3 − x 1 ) ⋯ ( x n − x 1 ) 0 x 2 ( x 2 − x 1 ) x 3 ( x 3 − x 1 ) ⋯ x n ( x n − x 1 ) ⋮ ⋮ ⋮ ⋱ ⋮ 0 x 2 n − 2 ( x 2 − x 1 ) x 3 n − 2 ( x 3 − x 1 ) ⋯ x n n − 2 ( x n − x 1 ) ∣ = ( x 2 − x 1 ) ( x 3 − x 1 ) ⋯ ( x n − x 1 ) ∣ 1 1 ⋯ 1 x 2 x 3 ⋯ x n ⋮ ⋮ ⋱ ⋮ x 2 n − 2 x 3 n − 2 ⋯ x n n − 2 ∣ 1. 验 n = 2 , V 2 = ∣ 1 1 x 1 x 2 ∣ = x 2 − x 1 2. 设 n − 1 成 立 3. 则 V n = ( x 2 − x 1 ) ( x 3 − x 1 ) ⋯ ( x n − x 1 ) ⋅ ∏ 2 ≤ i &lt; j ≤ n ( x j − x i ) = ∏ 1 ≤ i &lt; j ≤ n ( x j − x i ) [ 例 2 ] D n = ∣ 2 a 1 ⋯ 0 a 2 2 a ⋯ 0 ⋮ ⋮ ⋱ ⋮ 0 ⋯ a 2 2 a ∣ = ( n + 1 ) a n D n = 2 a D n − 1 − a 2 D n − 2 1. 验 D 1 = 2 a , D 2 = ∣ 2 a 1 a 2 2 a ∣ = 3 a 2 = ( 2 + 1 ) a 2 成 立 2. 设 n &lt; k 时 , 成 立 3. 证 明 : D n = 2 a D n − 1 − a 2 D n − 2 D k = 2 a D k − 1 − a 2 D k − 2 = 2 a ( k − 1 + 1 ) a k − 1 − a 2 ( k − 2 + 1 ) a k − 2 = 2 k a k − ( k − 1 ) a k = ( k + 1 ) a k \begin{aligned} \ [例1]&amp;\color{maroon}证V_n=\begin{vmatrix}1&amp;1&amp;\cdots&amp;1\\x_1&amp;x_2&amp;\cdots&amp;x_n\\x_1^2&amp;x_2^2&amp;\cdots&amp;x_n^2\\\vdots&amp;\vdots&amp;\ddots&amp;\vdots\\x_1^{n-1}&amp;x_2^{n-1}&amp;\cdots&amp;x_n^{n-1}\end{vmatrix}=\prod_{1\leq i&lt; j\leq n}(x_j-x_i)\\ &amp;[分析]用上一行的-x_1倍加到下一行\\ &amp;V_n=\begin{vmatrix}1&amp;1&amp;1&amp;\cdots&amp;1\\0&amp;(x_2-x_1)&amp;(x_3-x_1)&amp;\cdots&amp;(x_n-x_1)\\0&amp;x_2(x_2-x_1)&amp;x_3(x_3-x_1)&amp;\cdots&amp;x_n(x_n-x_1)\\\vdots&amp;\vdots&amp;\vdots&amp;\ddots&amp;\vdots\\0&amp;x_2^{n-2}(x_2-x_1)&amp;x_3^{n-2}(x_3-x_1)&amp;\cdots&amp;x_n^{n-2}(x_n-x_1)\end{vmatrix}\\ &amp;=(x_2-x_1)(x_3-x_1)\cdots(x_n-x_1)\begin{vmatrix}1&amp;1&amp;\cdots&amp;1\\x_2&amp;x_3&amp;\cdots&amp;x_n\\\vdots&amp;\vdots&amp;\ddots&amp;\vdots\\x_2^{n-2}&amp;x_3^{n-2}&amp;\cdots&amp;x_n^{n-2}\end{vmatrix}\\ &amp;1.验n=2,V_2=\begin{vmatrix}1&amp;1\\x_1&amp;x_2\end{vmatrix}=x_2-x_1\\ &amp;2.设n-1成立\\ &amp;3.则V_n=(x_2-x_1)(x_3-x_1)\cdots(x_n-x_1)\cdot\prod_{2\leq i&lt; j\leq n}(x_j-x_i)=\prod_{1\leq i&lt; j\leq n}(x_j-x_i)\\ [例2]&amp;\color{maroon}D_n=\begin{vmatrix}2a&amp;1&amp;\cdots&amp;0\\a^2&amp;2a&amp;\cdots&amp;0\\\vdots&amp;\vdots&amp;\ddots&amp;\vdots\\0&amp;\cdots&amp;a^2&amp;2a\end{vmatrix}=(n+1)a^n\\ &amp;D_n=2aD_{n-1}-a^2D_{n-2}\\ &amp;1.验D_1=2a,D_2=\begin{vmatrix}2a&amp;1\\a^2&amp;2a\end{vmatrix}=3a^2=(2+1)a^2成立\\ &amp;2.设n&lt; k时,成立\\ &amp;3.证明:D_n=2aD_{n-1}-a^2D_{n-2}\\ &amp;D_k=2aD_{k-1}-a^2D_{k-2}=2a(k-1+1)a^{k-1}-a^2(k-2+1)a^{k-2}\\ &amp;=2ka^k-(k-1)a^k=(k+1)a^k\\ \end{aligned}  [1][2]Vn=1x1x12x1n11x2x22x2n11xnxn2xnn1=1i<jn(xjxi)[]x1Vn=10001(x2x1)x2(x2x1)x2n2(x2x1)1(x3x1)x3(x3x1)x3n2(x3x1)1(xnx1)xn(xnx1)xnn2(xnx1)=(x2x1)(x3x1)(xnx1)1x2x2n21x3x3n21xnxnn21.n=2,V2=1x11x2=x2x12.n13.Vn=(x2x1)(x3x1)(xnx1)2i<jn(xjxi)=1i<jn(xjxi)Dn=2aa2012aa2002a=(n+1)anDn=2aDn1a2Dn21.D1=2a,D2=2aa212a=3a2=(2+1)a22.n<k3.Dn=2aDn1a2Dn2Dk=2aDk1a2Dk2=2a(k1+1)ak1a2(k2+1)ak2=2kak(k1)ak=(k+1)ak

抽象性行列式

1.用行列式性质

2.用矩阵

(1) C=AB即|C|=|A||B|

(2) C=A+B即|C|=|A+B|,恒等变形化为乘积或建方程

(3) |A*|=|A|{n-1},|(A*)*|=|A|{(n-1)^2}

3.用相似理论

(1) |A|=λ_1λ_2…λ_n

(2) 若A~B即|A|=|B|

  [ 例 1 ] 设 α 1 , α 2 , α 3 , β 1 , β 2 是 四 维 列 向 量 , 且 ∣ α 1 α 2 α 3 β 1 ∣ = m , ∣ α 1 α 2 β 2 α 3 ∣ = n 则 ∣ α 3 α 2 α 1 β 1 + β 2 ∣ = ‾ I = ∣ α 3 α 2 α 1 β 1 ∣ + ∣ α 3 α 2 α 1 β 2 ∣ = ∣ α 1 α 2 α 3 β 1 ∣ + ∣ α 1 α 2 β 2 α 3 ∣ = − m + n [ 例 2 ] 设 A = ( α 1 α 2 α 3 ) 为 三 阶 矩 阵 , 且 ∣ A ∣ = 4 , 若 B = ( α 1 − 3 α 2 + 2 α 3 , α 2 − 2 α 3 , 2 α 2 + α 3 ) , 则 ∣ B ∣ = ‾ B = ( α 1 α 2 α 3 ) ( 1 0 0 − 3 1 2 2 − 2 1 ) B = A ⋅ C &ThickSpace; ⟹ &ThickSpace; ∣ B ∣ = ∣ A ∣ ⋅ ∣ C ∣ ∣ B ∣ = 4 ⋅ ∣ 1 0 0 − 3 1 2 2 − 2 1 ∣ = 4 ⋅ 5 = 20 [ 例 3 ] 设 A n × n , A A T = E , ∣ A ∣ &lt; 0 , 则 ∣ A + E ∣ = ‾ ∣ A + E ∣ = ∣ A + A A T ∣ = ∣ A ( E + A T ) ∣ = ∣ A ∣ ∣ ( E + A ) T ∣ = ∣ A ∣ ∣ E + A ∣ &ThickSpace; ⟹ &ThickSpace; ( 1 − ∣ A ∣ ) ∣ A + E ∣ = 0 &ThickSpace; ⟹ &ThickSpace; ∣ A + E ∣ = 0 \begin{aligned} \ [例1]&amp;\color{maroon}设\alpha_1,\alpha_2,\alpha_3,\beta_1,\beta_2是四维列向量,且\begin{vmatrix}\alpha_1&amp;\alpha_2&amp;\alpha_3&amp;\beta_1\end{vmatrix}=m,\\ &amp;\color{maroon}\begin{vmatrix}\alpha_1&amp;\alpha_2&amp;\beta_2&amp;\alpha_3\end{vmatrix}=n\\ &amp;\color{maroon}则\begin{vmatrix}\alpha_3&amp;\alpha_2&amp;\alpha_1&amp;\beta_1+\beta_2\end{vmatrix}=\underline{\quad}\\ &amp;I=\begin{vmatrix}\alpha_3&amp;\alpha_2&amp;\alpha_1&amp;\beta_1\end{vmatrix}+\begin{vmatrix}\alpha_3&amp;\alpha_2&amp;\alpha_1&amp;\beta_2\end{vmatrix}\\ &amp;=\begin{vmatrix}\alpha_1&amp;\alpha_2&amp;\alpha_3&amp;\beta_1\end{vmatrix}+\begin{vmatrix}\alpha_1&amp;\alpha_2&amp;\beta_2&amp;\alpha_3\end{vmatrix}\\ &amp;=-m+n\\ [例2]&amp;\color{maroon}设A=\begin{pmatrix}\alpha_1&amp;\alpha_2&amp;\alpha_3\end{pmatrix}为三阶矩阵,且|A|=4,若B=(\alpha_1-3\alpha_2+2\alpha_3,\alpha_2-2\alpha_3,2\alpha_2+\alpha_3),则|B|=\underline{\quad}\\ &amp;B=\begin{pmatrix}\alpha_1&amp;\alpha_2&amp;\alpha_3 \end{pmatrix}\begin{pmatrix}1&amp;0&amp;0\\-3&amp;1&amp;2\\2&amp;-2&amp;1 \end{pmatrix}\\ &amp;B=A\cdot C\implies|B|=|A|\cdot|C|\\ &amp;|B|=4\cdot\begin{vmatrix}1&amp;0&amp;0\\-3&amp;1&amp;2\\2&amp;-2&amp;1 \end{vmatrix}=4\cdot5=20\\ [例3]&amp;\color{maroon}设A_{n\times n},AA^T=E,|A|&lt;0,则|A+E|=\underline{\quad}\\ &amp;|A+E|=|A+AA^T|=|A(E+A^T)|\\ &amp;=|A||(E+A)^T|=|A||E+A|\\ &amp;\implies(1-|A|)|A+E|=0\\ &amp;\implies|A+E|=0 \end{aligned}  [1][2][3]α1,α2,α3,β1,β2α1α2α3β1=m,α1α2β2α3=nα3α2α1β1+β2=I=α3α2α1β1+α3α2α1β2=α1α2α3β1+α1α2β2α3=m+nA=(α1α2α3)A=4,B=(α13α2+2α3,α22α3,2α2+α3),B=B=(α1α2α3)132012021B=ACB=ACB=4132012021=45=20An×n,AAT=E,A<0,A+E=A+E=A+AAT=A(E+AT)=A(E+A)T=AE+A(1A)A+E=0A+E=0

余子式与代数余子式计算

1.用行列式

2.用矩阵

3.用特征值

4.M_{ij}=(-1)^{i+j} A_{ij}

a i 1 A i 1 + a i 2 A i 2 + ⋯ + a i n A i n = ∣ ∗ a i 1 a i 2 ⋯ a i n ∗ ∣ k 1 A i 1 + k 2 A i 2 + ⋯ + k n A i n = ∣ ∗ k 1 k 2 ⋯ k n ∗ ∣ [ 例 1 ] 设 D n = ∣ 1 2 3 ⋯ n 1 2 0 ⋯ 0 1 0 3 ⋯ 0 ⋮ ⋮ ⋮ ⋱ ⋮ 1 0 0 ⋯ n ∣ 计 算 A 11 + A 12 + ⋯ + A 1 n 1 ⋅ A 11 + 2 ⋅ A 12 + 3 A 13 + ⋯ + n A 1 n = ∣ 1 2 3 ⋯ n ∗ ∣ = D n 1 ⋅ A 11 + 1 ⋅ A 12 + ⋯ + 1 ⋅ A 1 n = ∣ 1 1 1 ⋯ 1 ∗ ∣ = D n ^ A 11 + A 12 + ⋯ + A 1 n = ∣ 1 1 ⋯ 1 1 1 2 ⋯ 0 0 1 0 3 ⋯ 0 ⋮ ⋮ ⋮ ⋱ ⋮ 1 0 ⋯ 0 n ∣ = ∣ 1 − ∑ i = 2 n 1 i 1 ⋯ 1 1 0 2 ⋯ 0 0 0 0 3 ⋯ 0 ⋮ ⋮ ⋮ ⋱ ⋮ 0 0 ⋯ 0 n ∣ = n ! ( 1 − ∑ i = 2 n 1 i ) [ 例 2 ] 设 D 5 = ∣ 1 2 3 4 5 2 2 2 1 1 3 1 2 4 5 1 1 1 2 2 4 3 1 5 0 ∣ = 27 , 求 A 44 + A 45 A 41 + A 42 + A 43 + 2 ( A 44 + A 45 ) = 27 2 ( A 41 + A 42 + A 43 ) + ( A 44 + A 45 ) = 0 { x + 2 y = 27 2 x + y = 0 &ThickSpace; ⟹ &ThickSpace; y = 18 题 目 如 上 , 求 M 44 − M 45 M 44 = ( − 1 ) 4 + 4 A 44 = A 44 M 45 = ( − 1 ) 4 + 5 A 45 = − A 45 故 M 44 − M 45 = A 44 + A 45 = 18 \begin{aligned} &amp;a_{i1}A_{i1}+a_{i2}A_{i2}+\cdots+a_{in}A_{in}=\begin{vmatrix}*\\a_{i1}&amp;a_{i2}&amp;\cdots&amp;a_{in}\\*\end{vmatrix}\\ &amp;k_1A_{i1}+k_2A_{i2}+\cdots+k_nA_{in}=\begin{vmatrix}*\\k_1&amp;k_2&amp;\cdots&amp;k_n\\*\end{vmatrix}\\ [例1]&amp;\color{maroon}设D_n=\begin{vmatrix}1&amp;2&amp;3&amp;\cdots&amp;n\\1&amp;2&amp;0&amp;\cdots&amp;0\\1&amp;0&amp;3&amp;\cdots&amp;0\\\vdots&amp;\vdots&amp;\vdots&amp;\ddots&amp;\vdots\\1&amp;0&amp;0&amp;\cdots&amp;n\end{vmatrix}计算A_{11}+A_{12}+\cdots+A_{1n}\\ &amp;1\cdot A_{11}+2\cdot A_{12}+3A_{13}+\cdots+nA_{1n}=\begin{vmatrix}1&amp;2&amp;3&amp;\cdots&amp;n\\*\end{vmatrix}=D_n\\ &amp;1\cdot A_{11}+1\cdot A_{12}+\cdots+1\cdot A_{1n}=\begin{vmatrix}1&amp;1&amp;1&amp;\cdots&amp;1\\*\end{vmatrix}=\hat{D_n}\\ &amp;A_{11}+A_{12}+\cdots+A_{1n}=\begin{vmatrix}1&amp;1&amp;\cdots&amp;1&amp;1\\1&amp;2&amp;\cdots&amp;0&amp;0\\1&amp;0&amp;3&amp;\cdots&amp;0\\\vdots&amp;\vdots&amp;\vdots&amp;\ddots&amp;\vdots\\1&amp;0&amp;\cdots&amp;0&amp;n\end{vmatrix}\\ &amp;=\begin{vmatrix}1-\sum_{i=2}^n\frac1i&amp;1&amp;\cdots&amp;1&amp;1\\0&amp;2&amp;\cdots&amp;0&amp;0\\0&amp;0&amp;3&amp;\cdots&amp;0\\\vdots&amp;\vdots&amp;\vdots&amp;\ddots&amp;\vdots\\0&amp;0&amp;\cdots&amp;0&amp;n\end{vmatrix}=n!(1-\sum_{i=2}^n\frac1i)\\ [例2]&amp;\color{maroon}设D_5=\begin{vmatrix}1&amp;2&amp;3&amp;4&amp;5\\2&amp;2&amp;2&amp;1&amp;1\\3&amp;1&amp;2&amp;4&amp;5\\1&amp;1&amp;1&amp;2&amp;2\\4&amp;3&amp;1&amp;5&amp;0\end{vmatrix} =27,求A_{44}+A_{45}\\ &amp;A_{41}+A_{42}+A_{43}+2(A_{44}+A_{45})=27\\ &amp;2(A_{41}+A_{42}+A_{43})+(A_{44}+A_{45})=0\\ &amp;\begin{cases}x+2y=27\\2x+y=0\end{cases}\implies y=18\\ &amp;\color{maroon}题目如上,求M_{44}-M_{45}\\ &amp;M_{44}=(-1)^{4+4}A_{44}=A_{44}\\ &amp;M_{45}=(-1)^{4+5}A_{45}=-A_{45}\\ &amp;故M_{44}-M_{45}=A_{44}+A_{45}=18 \end{aligned} [1][2]ai1Ai1+ai2Ai2++ainAin=ai1ai2aink1Ai1+k2Ai2++knAin=k1k2knDn=111122003030n00nA11+A12++A1n1A11+2A12+3A13++nA1n=123n=Dn1A11+1A12++1A1n=1111=Dn^A11+A12++A1n=111112003100100n=1i=2ni100012003100100n=n!(1i=2ni1)D5=1231422113322114142551520=27,A44+A45A41+A42+A43+2(A44+A45)=272(A41+A42+A43)+(A44+A45)=0{x+2y=272x+y=0y=18M44M45M44=(1)4+4A44=A44M45=(1)4+5A45=A45M44M45=A44+A45=18

2矩阵

矩阵

定义与运算

矩 阵 &ThickSpace; ⟹ &ThickSpace; 数 表 &ThickSpace; ⟹ &ThickSpace; 由 “ 向 量 ” 组 成 A m × n = ( a 11 a 12 ⋯ a 1 n ⋮ ⋮ ⋱ ⋮ a m 1 a m 2 ⋯ a m n ) , 若 m = n , 则 称 A 叫 n 阶 矩 阵 \begin{aligned} &amp;矩阵\implies数表\implies由“向量”组成\\ &amp;A_{m\times n}=\begin{pmatrix}a_{11}&amp;a_{12}&amp;\cdots&amp;a_{1n}\\\vdots&amp;\vdots&amp;\ddots&amp;\vdots\\a_{m1}&amp;a_{m2}&amp;\cdots&amp;a_{mn}\end{pmatrix},若m=n,则称A叫n阶矩阵 \end{aligned} Am×n=a11am1a12am2a1namn,m=n,An

加法、数乘、乘法

1. 加 法 : A + B = ( a i j + b i j ) m × n { 1. 同 型 2. 对 应 加 2. 数 乘 : k A = ( k a i j ) m × n 若 A n × n &ThickSpace; ⟹ &ThickSpace; ∣ k A ∣ = k n ∣ A ∣ 3. 乘 法 : A B = ( c i j ) m × s { 1. A m × n B n × s 2. 内 积 [ 注 ] 1. ( A B ) C = A ( B C ) 2. ( A + B ) C = A C + B C , A ( B + C ) = A B + A C 3. k A B = A k B 4. A B ̸ = B A , ( A B ) n ̸ = A n B n 5. A B = 0 不 能 推 出 A = 0 或 B = 0 6. A B = A C , A ̸ = 0 不 能 推 出 B = C \begin{aligned} 1.&amp;加法:A+B=(a_{ij}+b_{ij})_{m\times n}\\ &amp;\begin{cases}1.同型\\2.对应加\end{cases}\\ 2.&amp;数乘:kA=(ka_{ij})_{m\times n}\\ &amp;若A_{n\times n}\implies |kA|=k^n|A|\\ 3.&amp;乘法:AB=(c_{ij})_{m\times s}\\ &amp;\begin{cases}1.A_{m\times n}B_{n\times s}\\2.内积\end{cases}\\ [注]&amp;1.(AB)C=A(BC)\\ &amp;2.(A+B)C=AC+BC,A(B+C)=AB+AC\\ &amp;3.kAB=AkB\\ &amp;4.AB\not=BA,(AB)^n\not=A^nB^n\\ &amp;5.AB=0不能推出A=0或B=0\\ &amp;6.AB=AC,A\not=0不能推出B=C \end{aligned} 1.2.3.[]A+B=(aij+bij)m×n{1.2.kA=(kaij)m×nAn×nkA=knAAB=(cij)m×s{1.Am×nBn×s2.1.(AB)C=A(BC)2.(A+B)C=AC+BC,A(B+C)=AB+AC3.kAB=AkB4.AB̸=BA,(AB)n̸=AnBn5.AB=0A=0B=06.AB=AC,A̸=0B=C

求A的幂

r(A)=1(秩为1)

  [ 例 1 ] 设 α = ( 1 2 3 ) , β = ( 1 1 2 1 3 ) ( 1 ) 求 A = α T β , ( 2 ) 求 A n ( 1 ) A = ( 1 2 3 ) ( 1 1 2 1 3 ) = ( 1 1 2 1 3 2 1 2 3 3 3 2 1 ) ( 2 ) A 2 = α T ( β α T ) β = ( 1 2 3 ) ( 1 1 2 1 3 ) ( 1 2 3 ) ( 1 1 2 1 3 ) = ( 1 2 3 ) ⋅ 3 ⋅ ( 1 1 2 1 3 ) = 3 ( 1 2 3 ) ( 1 1 2 1 3 ) = 3 A A n = α T β α T β ⋯ α T ⎵ n − 1 个 β α T β = 3 n − 1 A = 3 n − 1 ( 1 1 2 1 3 2 1 2 3 3 3 2 1 ) [ 小 结 ] 若 r ( A ) = 1 , A 为 方 阵 , 则 A n = [ t r ( A ) ] n − 1 A . 其 中 t r ( A ) = ∑ i = 1 n a i i , 叫 A 的 迹 ( t r a c e ) 如 A = ( a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ) [ 例 2 ] A = ( 1 4 2 − 2 − 8 4 1 2 2 1 ) &ThickSpace; ⟹ &ThickSpace; A n = ( − 6 ) n − 1 ⋅ A \begin{aligned} \ [例1]&amp;\color{maroon}设\alpha=\begin{pmatrix}1&amp; 2&amp; 3\end{pmatrix},\beta=\begin{pmatrix}1&amp; \frac12&amp; \frac13\end{pmatrix}\\ &amp;\color{maroon}(1)求A=\alpha^T\beta,(2)求A^n\\ &amp;(1)A=\begin{pmatrix}1\\2\\ 3\end{pmatrix}\begin{pmatrix}1&amp; \frac12&amp; \frac13\end{pmatrix}=\begin{pmatrix}1&amp;\frac12&amp;\frac13\\2&amp;1&amp;\frac23\\3&amp;\frac32&amp;1\end{pmatrix}\\ &amp;(2)A^2=\alpha^T(\beta\alpha^T)\beta\\ &amp;=\begin{pmatrix}1\\2\\ 3\end{pmatrix}\begin{pmatrix}1&amp; \frac12&amp; \frac13\end{pmatrix}\begin{pmatrix}1\\2\\ 3\end{pmatrix}\begin{pmatrix}1&amp; \frac12&amp; \frac13\end{pmatrix}\\ &amp;=\begin{pmatrix}1\\2\\ 3\end{pmatrix}\cdot3\cdot\begin{pmatrix}1&amp; \frac12&amp; \frac13\end{pmatrix}\\ &amp;=3\begin{pmatrix}1\\2\\ 3\end{pmatrix}\begin{pmatrix}1&amp; \frac12&amp; \frac13\end{pmatrix}\\ &amp;=3A\\ &amp;A^n=\alpha^T\underbrace{\beta\alpha^T\beta\cdots\alpha^T}_{n-1个\beta\alpha^T}\beta\\ &amp;=3^{n-1}A=3^{n-1}\begin{pmatrix}1&amp;\frac12&amp;\frac13\\2&amp;1&amp;\frac23\\3&amp;\frac32&amp;1\end{pmatrix}\\ [小结]&amp;\color{blue}若r(A)=1,A为方阵,则A^n=[tr(A)]^{n-1}A.其中tr(A)=\sum_{i=1}^na_{ii},叫A的迹(trace)\\ &amp;如A=\begin{pmatrix}\bf{a_{11}}&amp;a_{12}&amp;a_{13}\\a_{21}&amp;\bf{a_{22}}&amp;a_{23}\\a_{31}&amp;a_{32}&amp;\bf{a_{33}}\end{pmatrix}\\ [例2]&amp;\color{maroon}A=\begin{pmatrix}1&amp;4&amp;2\\-2&amp;-8&amp;4\\\frac12&amp;2&amp;1\end{pmatrix}\\ &amp;\implies A^n=(-6)^{n-1}\cdot A\\ \end{aligned}  [1][][2]α=(123),β=(12131)(1)A=αTβ,(2)An(1)A=123(12131)=1232112331321(2)A2=αT(βαT)β=123(12131)123(12131)=1233(12131)=3123(12131)=3AAn=αTn1βαT βαTβαTβ=3n1A=3n11232112331321r(A)=1,AAn=[tr(A)]n1A.tr(A)=i=1naii,A(trace)A=a11a21a31a12a22a32a13a23a33A=1221482241An=(6)n1A

找规律

  [ 例 1 ] 设 A = ( 1 4 2 0 − 3 − 2 0 4 3 ) , 则 A 9 = ‾ A 2 = ( 1 4 2 0 − 3 − 2 0 4 3 ) ( 1 4 2 0 − 3 − 2 0 4 3 ) = ( 1 0 0 0 1 0 0 0 1 ) = E A 9 = A 8 ⋅ A = ( A 2 ) 4 ⋅ A = E 4 ⋅ A = A [ 例 2 ] 设 A = ( 0 0 − 1 0 1 0 1 0 0 ) , 则 A 13 = ‾ A 2 = ( − 1 0 0 0 1 0 0 0 − 1 ) &ThickSpace; ⟹ &ThickSpace; A 4 = E , &ThickSpace; ⟹ &ThickSpace; A 13 = ( A 4 ) 3 ⋅ A = E 3 ⋅ A = A \begin{aligned} \ [例1]&amp;\color{maroon}设A=\begin{pmatrix}1&amp;4&amp;2\\0&amp;-3&amp;-2\\0&amp;4&amp;3\end{pmatrix},则A^9=\underline{\quad}\\ &amp;A^2=\begin{pmatrix}1&amp;4&amp;2\\0&amp;-3&amp;-2\\0&amp;4&amp;3\end{pmatrix}\begin{pmatrix}1&amp;4&amp;2\\0&amp;-3&amp;-2\\0&amp;4&amp;3\end{pmatrix}\\ &amp;=\begin{pmatrix}1&amp;0&amp;0\\0&amp;1&amp;0\\0&amp;0&amp;1\end{pmatrix}=E\\ &amp;A^9=A^8\cdot A=(A^2)^4\cdot A=E^4\cdot A=A\\ [例2]&amp;\color{maroon}设A=\begin{pmatrix}0&amp;0&amp;-1\\0&amp;1&amp;0\\1&amp;0&amp;0\end{pmatrix},则A^{13}=\underline{\quad}\\ &amp;A^2=\begin{pmatrix}-1&amp;0&amp;0\\0&amp;1&amp;0\\0&amp;0&amp;-1\end{pmatrix}\\ &amp;\implies A^4=E,\implies A^{13}=(A^4)^3\cdot A=E^3\cdot A=A \end{aligned}  [1][2]A=100434223,A9=A2=100434223100434223=100010001=EA9=A8A=(A2)4A=E4A=AA=001010100,A13=A2=100010001A4=E,A13=(A4)3A=E3A=A

拆开

即 A n = ( B + C ) n 前 提 : B C = C B [ 例 1 ] 设 A = ( 1 2 3 0 1 4 0 0 1 ) , 则 A n = ‾ A = ( 1 0 0 0 1 0 0 0 1 ) + ( 0 2 3 0 0 4 0 0 0 ) = E + B &ThickSpace; ⟹ &ThickSpace; A n = ( E + B ) n ( E B = B E ) = E n + C n 1 B E n − 1 + C n 2 B 2 E n − 2 + ⋯ 其 中 , B 2 = ( 0 2 3 0 0 4 0 0 0 ) ( 0 2 3 0 0 4 0 0 0 ) = ( 0 0 8 0 0 0 0 0 0 ) B 3 = 0 &ThickSpace; ⟹ &ThickSpace; A n = ( 1 0 0 0 1 0 0 0 1 ) + ( 0 2 n 3 n 0 0 4 n 0 0 0 ) + ( 0 0 4 n ( n − 1 ) 0 0 0 0 0 0 ) = ( 1 2 n 4 n 2 − n 0 1 4 n 0 0 1 ) \begin{aligned} &amp;\color{red}即A^n=(B+C)^n\\ &amp;\color{blue}前提:BC=CB\\ [例1]&amp;\color{maroon}设A=\begin{pmatrix}1&amp;2&amp;3\\0&amp;1&amp;4\\0&amp;0&amp;1\end{pmatrix},则A^n=\underline{\quad}\\ &amp;A=\begin{pmatrix}1&amp;0&amp;0\\0&amp;1&amp;0\\0&amp;0&amp;1\end{pmatrix}+\begin{pmatrix}0&amp;2&amp;3\\0&amp;0&amp;4\\0&amp;0&amp;0\end{pmatrix}=E+B\\ &amp;\implies A^n=(E+B)^n(EB=BE)\\ &amp;=E^n+C_n^1BE^{n-1}+C_n^2B^2E^{n-2}+\cdots\\ &amp;其中,B^2=\begin{pmatrix}0&amp;2&amp;3\\0&amp;0&amp;4\\0&amp;0&amp;0\end{pmatrix}\begin{pmatrix}0&amp;2&amp;3\\0&amp;0&amp;4\\0&amp;0&amp;0\end{pmatrix}=\begin{pmatrix}0&amp;0&amp;8\\0&amp;0&amp;0\\0&amp;0&amp;0\end{pmatrix}\\ &amp;B^3=0\\ &amp;\implies A^n=\begin{pmatrix}1&amp;0&amp;0\\0&amp;1&amp;0\\0&amp;0&amp;1\end{pmatrix}+\begin{pmatrix}0&amp;2n&amp;3n\\0&amp;0&amp;4n\\0&amp;0&amp;0\end{pmatrix}+\begin{pmatrix}0&amp;0&amp;4n(n-1)\\0&amp;0&amp;0\\0&amp;0&amp;0\end{pmatrix}\\ &amp;=\begin{pmatrix}1&amp;2n&amp;4n^2-n\\0&amp;1&amp;4n\\0&amp;0&amp;1\end{pmatrix} \end{aligned} [1]An=(B+C)nBC=CBA=100210341,An=A=100010001+000200340=E+BAn=(E+B)n(EB=BE)=En+Cn1BEn1+Cn2B2En2+B2=000200340000200340=000000800B3=0An=100010001+0002n003n4n0+0000004n(n1)00=1002n104n2n4n1

可逆矩阵

定 义 : 若 A 、 B 均 为 方 阵 , 且 A B = E , 称 A 、 B 可 逆 , 且 { B A = E A − 1 = B , B − 1 = A [ 注 ] A 可 逆 &ThickSpace; ⟺ &ThickSpace; ∣ A ∣ ̸ = 0 性 质 : 1. ( A − 1 ) − 1 = A 2. k ̸ = 0 , ( k A ) − 1 = 1 k A − 1 3. ( A B ) − 1 = B − 1 A − 1 ( 穿 脱 原 则 ) 4. ( A T ) − 1 = ( A − 1 ) T 5. ∣ A − 1 ∣ = 1 ∣ A ∣ \begin{aligned} 定义:&amp;\color{blue}若A、B均为方阵,且AB=E,称A、B可逆,且\begin{cases}BA=E\\A^{-1}=B,B^{-1}=A\end{cases}\\ [注]&amp;\color{blue}A可逆\iff|A|\not=0\\ 性质:&amp;1.(A^{-1})^{-1}=A\\ &amp;2.k\not=0,(kA)^{-1}=\frac1kA^{-1}\\ &amp;3.(AB)^{-1}=B^{-1}A^{-1}(穿脱原则)\\ &amp;4.(A^T)^{-1}=(A^{-1})^T\\ &amp;5.|A^{-1}|=\frac1{|A|}\\ \end{aligned} :[]:ABAB=EAB{BA=EA1=B,B1=AAA̸=01.(A1)1=A2.k̸=0,(kA)1=k1A13.(AB)1=B1A1(穿)4.(AT)1=(A1)T5.A1=A1

求A的逆

1. 抽 象 型 { 1. 创 造 A B = E 2. 创 造 A = B C , 且 B 、 C 均 可 逆 &ThickSpace; ⟹ &ThickSpace; A − 1 = C − 1 B − 1 2. 具 体 型 { 1. 用 ∗ 2. 用 初 等 变 换 \begin{aligned} &amp;1.抽象型\begin{cases}1.创造AB=E\\2.创造A=BC,且B、C均可逆\implies A^{-1}=C^{-1}B^{-1}\end{cases}\\ &amp;2.具体型\begin{cases}1.用*\\2.用初等变换\end{cases} \end{aligned} 1.{1.AB=E2.A=BCBCA1=C1B12.{1.2.

抽象型

  [ 例 1 ] 设 n 阶 矩 阵 A 满 足 5 A 3 + 2 A 2 + 3 A − 4 E = 0 , 证 明 A 可 逆 并 求 出 A − 1 多 项 式 除 法 部 分 请 看 下 图 &ThickSpace; ⟹ &ThickSpace; A ( 5 A 2 − 2 A + 3 E ) − 4 E = 0 &ThickSpace; ⟹ &ThickSpace; A ( 5 A 2 − 2 A + 3 E ) = 4 E &ThickSpace; ⟹ &ThickSpace; A − 1 = 1 4 ( 5 A 2 − 2 A + 3 E ) \begin{aligned} \ [例1]&amp;\color{maroon}设n阶矩阵A满足5A^3+2A^2+3A-4E=0,证明A可逆并求出A^{-1}\\ &amp;多项式除法部分请看下图\\ &amp;\implies A(5A^2-2A+3E)-4E=0\\ &amp;\implies A(5A^2-2A+3E)=4E\\ &amp;\implies A^{-1}=\frac14(5A^2-2A+3E) \end{aligned}  [1]nA5A3+2A2+3A4E=0,AA1A(5A22A+3E)4E=0A(5A22A+3E)=4EA1=41(5A22A+3E)

多项式除法1

  [ 例 2 ] 设 n 阶 矩 阵 A 满 足 A 2 + A − 5 E = 0 , 证 明 A − E 可 逆 并 求 出 ( A − E ) − 1 多 项 式 除 法 部 分 请 看 下 图 &ThickSpace; ⟹ &ThickSpace; ( A − E ) ( A + 2 E ) − 3 E = 0 &ThickSpace; ⟹ &ThickSpace; ( A − E ) ⋅ 1 3 ( A + 2 E ) = E &ThickSpace; ⟹ &ThickSpace; ( A − E ) − 1 = 1 3 ( A + 2 E ) \begin{aligned} \ [例2]&amp;\color{maroon}设n阶矩阵A满足A^2+A-5E=0,证明A-E可逆并求出(A-E)^{-1}\\ &amp;多项式除法部分请看下图\\ &amp;\implies (A-E)(A+2E)-3E=0\\ &amp;\implies (A-E)\cdot\frac13(A+2E)=E\\ &amp;\implies (A-E)^{-1}=\frac13(A+2E) \end{aligned}  [2]nAA2+A5E=0,AE(AE)1(AE)(A+2E)3E=0(AE)31(A+2E)=E(AE)1=31(A+2E)

多项式除法2

  [ 例 3 ] 设 A 、 B 、 A + B 均 为 n 阶 可 逆 矩 阵 , 证 明 A − 1 + B − 1 可 逆 并 求 出 ( A − 1 + B − 1 ) − 1 以 普 通 的 数 a 、 b 恒 等 变 形 来 做 类 比 设 a , b , a + b 均 不 为 0 , 则 ( a − 1 + b − 1 ) − 1 = ( 1 a + 1 b ) − 1 = ( a + b a b ) − 1 = a b a + b = a ( a + b ) − 1 b 故 类 比 写 出 ( A − 1 + B − 1 ) − 1 = A ( A + B ) − 1 B 往 回 写 : A − 1 + B − 1 = B − 1 ( A + B ) A − 1 = B − 1 A A − 1 + B − 1 B A − 1 = B − 1 + A − 1 故 可 回 推 : A − 1 + B − 1 = B − 1 + A − 1 = B − 1 A A − 1 + B − 1 B A − 1 = B − 1 ( A + B ) A − 1 &ThickSpace; ⟹ &ThickSpace; ( A − 1 + B − 1 ) − 1 = A ( A + B ) − 1 B \begin{aligned} \ [例3]&amp;\color{maroon}设A、B、A+B均为n阶可逆矩阵,证明A^{-1}+B^{-1}可逆并求出(A^{-1}+B^{-1})^{-1}\\ &amp;以普通的数a、b恒等变形来做类比\\ &amp;设a,b,a+b均不为0,则(a^{-1}+b^{-1})^{-1}=(\frac1a+\frac1b)^{-1}=(\frac{a+b}{ab})^{-1}\\ &amp;=\frac{ab}{a+b}=a(a+b)^{-1}b\\ &amp;故类比写出(A^{-1}+B^{-1})^{-1}=A(A+B)^{-1}B\\ &amp;往回写:A^{-1}+B^{-1}=B^{-1}(A+B)A^{-1}=B^{-1}AA^{-1}+B^{-1}BA^{-1}=B^{-1}+A^{-1}\\ 故可回推:&amp;A^{-1}+B^{-1}=B^{-1}+A^{-1}\\ &amp;=B^{-1}AA^{-1}+B^{-1}BA^{-1}=B^{-1}(A+B)A^{-1}\\ &amp;\implies (A^{-1}+B^{-1})^{-1}=A(A+B)^{-1}B\\ \end{aligned}  [3]ABA+BnA1+B1(A1+B1)1aba,b,a+b0(a1+b1)1=(a1+b1)1=(aba+b)1=a+bab=a(a+b)1b(A1+B1)1=A(A+B)1BA1+B1=B1(A+B)A1=B1AA1+B1BA1=B1+A1A1+B1=B1+A1=B1AA1+B1BA1=B1(A+B)A1(A1+B1)1=A(A+B)1B

具体型
用A的伴随矩阵求逆

定 义 : A ∗ = ( A 11 A 21 A 31 A 12 A 22 A 32 A 13 A 23 A 33 ) 叫 A 的 伴 随 矩 阵 , 记 作 A ∗ A A ∗ = A ∗ A = ∣ A ∣ E A A ∗ = ( a 11 a 12 a 21 a 22 ) ( A 11 A 21 A 12 A 22 ) = ( ∣ A ∣ 0 0 ∣ A ∣ ) = ∣ A ∣ ( 1 0 0 1 ) = ∣ A ∣ E [ 注 ] 天 生 可 交 换 一 般 地 , A B ̸ = B A , 但 是 { 1. A ⋅ k E = k E ⋅ A 2. A ⋅ A ∗ = A ∗ ⋅ A 3. 若 A B = E &ThickSpace; ⟹ &ThickSpace; A B = B A \begin{aligned} 定义:&amp;A^*=\begin{pmatrix}A_{11}&amp;A_{21}&amp;A_{31}\\A_{12}&amp;A_{22}&amp;A_{32}\\A_{13}&amp;A_{23}&amp;A_{33} \end{pmatrix}叫A的伴随矩阵,记作A^*\\ &amp;\color{maroon}AA^*=A^*A=\mid A\mid E\\ &amp;AA^*=\begin{pmatrix}a_{11}&amp;a_{12}\\a_{21}&amp;a_{22}\end{pmatrix}\begin{pmatrix}A_{11}&amp;A_{21}\\A_{12}&amp;A_{22}\end{pmatrix}\\ &amp;=\begin{pmatrix}\mid A\mid&amp;0\\0&amp;\mid A\mid\end{pmatrix}\\ &amp;=\mid A\mid\begin{pmatrix}1&amp;0\\0&amp;1\end{pmatrix}=\mid A\mid E\\ [注]&amp;天生可交换\\ &amp;一般地,AB\not=BA,但是\\ &amp;\begin{cases}1.A\cdot kE=kE\cdot A\\2.A\cdot A^*=A^*\cdot A\\3.若AB=E\implies AB=BA\end{cases} \end{aligned} []A=A11A12A13A21A22A23A31A32A33AAAA=AA=AEAA=(a11a21a12a22)(A11A12A21A22)=(A00A)=A(1001)=AEAB̸=BA,1.AkE=kEA2.AA=AA3.AB=EAB=BA

性 质 : 设 A 为 n 阶 矩 阵 , ∣ A ∣ ̸ = 0 , 即 A 可 逆 , 则 1. A A ∗ = A ∗ A = ∣ A ∣ E 2. ∣ A ∗ ∣ = ∣ A ∣ n − 1 3. ( A T ) ∗ = ( A ∗ ) T 4. ( k A ) ∗ = k n − 1 A ∗ 5. A − 1 = 1 ∣ A ∣ A ∗ 6. A ∗ = ∣ A ∣ A − 1 7. ( A ∗ ) − 1 = ( A − 1 ) ∗ 8. ( A ∗ ) ∗ = ∣ A ∣ n − 2 A 9. ∣ ( A ∗ ) ∗ ∣ = ∣ A ∣ ( n − 1 ) 2 = ∣ A ∣ n 2 − 2 n + 1 10. ( A B ) ∗ = B ∗ A ∗ \begin{aligned} 性质:&amp;设A为n阶矩阵,\mid A\mid\not=0,即A可逆,则\\ 1.&amp;AA^*=A^*A=\mid A\mid E\\ 2.&amp;\mid A^*\mid=\mid A\mid^{n-1}\\ 3.&amp;(A^T)^*=(A^*)^T\\ 4.&amp;(kA)^*=k^{n-1}A^*\\ 5.&amp;A^{-1}=\frac1{\mid A\mid}A^*\\ 6.&amp;A^*=\mid A\mid A^{-1}\\ 7.&amp;(A^*)^{-1}=(A^{-1})^*\\ 8.&amp;(A^*)^*=\mid A\mid^{n-2}A\\ 9.&amp;\mid (A^*)^*\mid=\mid A\mid^{(n-1)^2}=\mid A\mid^{n^2-2n+1}\\ 10.&amp;(AB)^*=B^*A^* \end{aligned} :1.2.3.4.5.6.7.8.9.10.AnA̸=0,A,AA=AA=AEA=An1(AT)=(A)T(kA)=kn1AA1=A1AA=AA1(A)1=(A1)(A)=An2A(A)=A(n1)2=An22n+1(AB)=BA

  [ 例 1 ] 设 A 4 × 4 , ∣ A ∣ = − 2 , 则 ∣ 6 A − 1 + A ∗ ∣ = ‾ A A ∗ = ∣ A ∣ E = − 2 E &ThickSpace; ⟹ &ThickSpace; A − 1 = 1 ∣ A ∣ A ∗ = − 1 2 A ∗ &ThickSpace; ⟹ &ThickSpace; ∣ 6 A − 1 + A ∗ ∣ = ∣ − 3 A ∗ + A ∗ ∣ = ∣ − 2 A ∗ ∣ = ( − 2 ) 4 ∣ A ∗ ∣ = ( − 2 ) 4 ⋅ ( − 2 ) 3 = − 2 7 [ 例 2 ] 已 知 A = ( a b c d ) , a d ̸ = b c , 求 A − 1 A − 1 = 1 ∣ A ∣ A ∗ { 1. 求 ∣ A ∣ ̸ = 0 2. 求 A ∗ 3. A − 1 = 1 ∣ A ∣ A ∗ 1. ∣ A ∣ = a d − b c ̸ = 0 2. A ∗ = ( d − b − c a ) 3. A − 1 = 1 a d − b c ( d − b − c a ) ( 主 对 角 线 对 调 副 对 角 线 变 号 ) ⋅ 伴 随 矩 阵 [ 例 3 ] A = ( 3 2 1 1 1 1 1 0 1 ) , 求 A − 1 做 个 老 实 人 1. ∣ A ∣ = 2 ̸ = 0 2. A ∗ = ( A 11 A 21 A 31 A 12 A 22 A 32 A 13 A 23 A 33 ) = ( 1 − 2 1 0 2 − 2 − 1 2 1 ) 3. A − 1 = 1 2 ( 1 − 2 1 0 2 − 2 − 1 2 1 ) = ( 1 2 − 1 1 2 0 1 − 1 − 1 2 1 1 2 ) [ 例 4 ] 设 A − 1 = ( 1 − 2 1 0 0 1 − 2 1 0 0 1 − 2 0 0 0 1 ) , 求 ∣ A ∣ 的 所 有 代 数 余 子 式 之 和 = ‾ A ∗ = ∣ A ∣ A − 1 ∣ A − 1 ∣ = 1 &ThickSpace; ⟹ &ThickSpace; ∣ A ∣ = 1 即 A ∗ = A − 1 , 最 后 得 答 案 为 0 [ 例 5 ] 设 A 3 × 3 ̸ = 0 , 若 a i j + A i j = 0 , 则 ∣ A ∣ = ‾ A i j = − a i j &ThickSpace; ⟹ &ThickSpace; A ∗ = − A T &ThickSpace; ⟹ &ThickSpace; A A ∗ = − A A T ∣ A ∣ E = − A A T &ThickSpace; ⟹ &ThickSpace; ∣ A ∣ 3 = − ∣ A ∣ ∣ A T ∣ &ThickSpace; ⟹ &ThickSpace; ∣ A ∣ 3 = − ∣ A ∣ 2 ∣ A ∣ 2 ( ∣ A ∣ + 1 ) = 0 &ThickSpace; ⟹ &ThickSpace; ∣ A ∣ = − 1 \begin{aligned} \ [例1]&amp;\color{maroon}设A_{4\times4},\mid A\mid=-2,则\mid 6A^{-1}+A^*\mid=\underline{\quad}\\ &amp;AA^*=\mid A\mid E=-2E\\ &amp;\implies A^{-1}=\frac1{\mid A\mid}A^*=-\frac12A^*\\ &amp;\implies \mid 6A^{-1}+A^*\mid=\mid -3A^*+A^*\mid=\mid -2A^*\mid\\ &amp;=(-2)^4\mid A^*\mid=(-2)^4\cdot(-2)^3=-2^7\\ [例2]&amp;\color{maroon}已知A=\begin{pmatrix}a&amp;b\\c&amp;d\end{pmatrix},ad\not=bc,求A^{-1}\\ &amp;A^{-1}=\frac1{\mid A\mid}A^*\begin{cases}1.求\mid A\mid\not=0\\2.求A^*\\3.A^{-1}=\frac1{\mid A\mid}A^*\end{cases}\\ &amp;1.\mid A\mid=ad-bc\not=0\\ &amp;2.A^*=\begin{pmatrix}d&amp;-b\\-c&amp;a\end{pmatrix}\\ &amp;3.A^{-1}=\frac1{ad-bc}\begin{pmatrix}d&amp;-b\\-c&amp;a\end{pmatrix}\\ &amp;\color{grey}\begin{pmatrix}主对角线对调\\副对角线变号\end{pmatrix}\cdot 伴随矩阵\\ [例3]&amp;\color{maroon}A=\begin{pmatrix}3&amp;2&amp;1\\1&amp;1&amp;1\\1&amp;0&amp;1\end{pmatrix},求A^{-1}\\ &amp;做个老实人\\ &amp;1.\mid A\mid =2\not=0\\ &amp;2.A^*=\begin{pmatrix}A_{11}&amp;A_{21}&amp;A_{31}\\A_{12}&amp;A_{22}&amp;A_{32}\\A_{13}&amp;A_{23}&amp;A_{33}\end{pmatrix}=\begin{pmatrix}1&amp;-2&amp;1\\0&amp;2&amp;-2\\-1&amp;2&amp;1 \end{pmatrix}\\ &amp;3.A^{-1}=\frac12\begin{pmatrix}1&amp;-2&amp;1\\0&amp;2&amp;-2\\-1&amp;2&amp;1\end{pmatrix}=\begin{pmatrix}\frac12&amp;-1&amp;\frac12\\0&amp;1&amp;-1\\-\frac12&amp;1&amp;\frac12\end{pmatrix}\\ [例4]&amp;\color{maroon}设A^{-1}=\begin{pmatrix}1&amp;-2&amp;1&amp;0\\0&amp;1&amp;-2&amp;1\\0&amp;0&amp;1&amp;-2\\0&amp;0&amp;0&amp;1\end{pmatrix},求\mid A\mid的所有代数余子式之和=\underline{\quad}\\ &amp;A^*=\mid A\mid A^{-1}\\ &amp;\mid A^{-1}\mid=1\implies \mid A\mid=1\\ &amp;即A^*=A^{-1},最后得答案为0\\ [例5]&amp;\color{maroon}设A_{3\times3}\not=0,若a_{ij}+A_{ij}=0,则\mid A\mid=\underline{\quad}\\ &amp;A_{ij}=-a_{ij}\implies A^*=-A^T\implies AA^*=-AA^T\\ &amp;\mid A\mid E=-AA^T\implies \mid A\mid^3=-\mid A\mid\mid A^T\mid\implies \mid A\mid^3=-\mid A\mid^2\\ &amp;\mid A\mid^2(\mid A\mid+1)=0\implies \mid A\mid=-1\\ \end{aligned}  [1][2][3][4][5]A4×4,A=2,6A1+A=AA=AE=2EA1=A1A=21A6A1+A=3A+A=2A=(2)4A=(2)4(2)3=27A=(acbd),ad̸=bc,A1A1=A1A1.A̸=02.A3.A1=A1A1.A=adbc̸=02.A=(dcba)3.A1=adbc1(dcba)(线线)A=311210111,A11.A=2̸=02.A=A11A12A13A21A22A23A31A32A33=1012221213.A1=21101222121=2102111121121A1=1000210012100121A=A=AA1A1=1A=1A=A1,0A3×3̸=0,aij+Aij=0,A=Aij=aijA=ATAA=AATAE=AATA3=AATA3=A2A2(A+1)=0A=1

用初等变换求逆

1. 初 等 矩 阵 定 义 单 位 阵 E 经 过 一 次 初 等 变 换 得 到 的 矩 阵 , 叫 初 等 矩 阵 ( 1 0 0 0 k 0 0 0 1 ) = E 2 ( k ) &ThickSpace; ⟹ &ThickSpace; E i ( k ) 称 为 倍 乘 矩 阵 ( 0 1 0 1 0 0 0 0 1 ) = E 12 &ThickSpace; ⟹ &ThickSpace; E i j 称 为 互 换 矩 阵 ( 1 0 0 0 1 0 k 0 1 ) = E 31 ( k ) &ThickSpace; ⟹ &ThickSpace; E i j ( k ) 称 为 倍 加 矩 阵 2. 性 质 与 公 式 设 k ̸ = 0 1. ∣ E i j ∣ = − 1 ∣ E i j ( k ) ∣ = − 1 ∣ E i ( k ) ∣ = k 2. E i j T = E i j E i j T ( k ) = E i j ( k ) E i T ( k ) = E i ( k ) 3. E i j − 1 = E i j E i j − 1 ( k ) = E i j ( − k ) E i − 1 ( k ) = E i ( 1 k ) 4. E i j ∗ = − E i j E i j ∗ ( k ) = E i j ( − k ) E i ∗ ( k ) = k E i ( 1 k ) 3. 左 行 右 列 定 理 记 初 等 矩 阵 为 P 若 P A = B , 把 A 做 了 一 次 与 P 相 同 的 初 等 行 变 换 若 A P = B , 把 A 做 了 一 次 与 P 相 同 的 初 等 列 变 换 \begin{aligned} 1.&amp;\color{red}初等矩阵定义\\ &amp;单位阵E经过\color{maroon}{一次}\color{black}初等变换得到的矩阵,叫初等矩阵\\ &amp;\begin{pmatrix}1&amp;0&amp;0\\0&amp;k&amp;0\\0&amp;0&amp;1\end{pmatrix}=E_2(k)\implies E_i(k)称为倍乘矩阵\\ &amp;\begin{pmatrix}0&amp;1&amp;0\\1&amp;0&amp;0\\0&amp;0&amp;1\end{pmatrix}=E_{12}\implies E_{ij}称为互换矩阵\\ &amp;\begin{pmatrix}1&amp;0&amp;0\\0&amp;1&amp;0\\k&amp;0&amp;1\end{pmatrix}=E_{31}(k)\implies E_{ij}(k)称为倍加矩阵\\ 2.&amp;\color{red}性质与公式\\ &amp;设k\not=0\\ &amp;1.\mid E_{ij}\mid=-1\quad\mid E_{ij}(k)\mid=-1\quad\mid E_i(k)\mid=k\\ &amp;2.E_{ij}^T=E_{ij}\quad E_{ij}^T(k)=E_{ij}(k)\quad E_i^T(k)=E_i(k)\\ &amp;3.E_{ij}^{-1}=E_{ij}\quad E_{ij}^{-1}(k)=E_{ij}(-k)\quad E_i^{-1}(k)=E_i(\frac1k)\\ &amp;4.E_{ij}^*=-E_{ij}\quad E_{ij}^*(k)=E_{ij}(-k)\quad E_i^*(k)=kE_i(\frac1k)\\ 3.&amp;\color{red}左行右列定理\\ &amp;记初等矩阵为P\\ &amp;若PA=B,把A做了一次与P相同的初等行变换\\ &amp;若AP=B,把A做了一次与P相同的初等列变换\\ \end{aligned} 1.2.3.E1000k0001=E2(k)Ei(k)010100001=E12Eij10k010001=E31(k)Eij(k)k̸=01.Eij=1Eij(k)=1Ei(k)=k2.EijT=EijEijT(k)=Eij(k)EiT(k)=Ei(k)3.Eij1=EijEij1(k)=Eij(k)Ei1(k)=Ei(k1)4.Eij=EijEij(k)=Eij(k)Ei(k)=kEi(k1)PPA=BAPAP=BAP

  [ 例 1 ] 设 A 是 3 阶 可 逆 矩 阵 , 交 换 A 的 第 1 列 和 第 2 列 得 到 B , 则 B ∗ 可 由 ( D ) 互 换 得 到 ( A ) A ∗ 的 第 1 列 与 第 2 列 ( B ) A ∗ 的 第 1 行 与 第 2 行 ( C ) − A ∗ 的 第 1 列 与 第 2 列 ( D ) − A ∗ 的 第 1 行 与 第 2 行 A E 12 = B , B ∗ = ∣ B ∣ B − 1 , A ∗ = ∣ A ∣ A − 1 ∣ A ∣ ∣ E 12 ∣ = ∣ B ∣ &ThickSpace; ⟹ &ThickSpace; − ∣ A ∣ = ∣ B ∣ ( A E 12 ) − 1 = B − 1 &ThickSpace; ⟹ &ThickSpace; E 12 − 1 A − 1 = B − 1 &ThickSpace; ⟹ &ThickSpace; E 12 A − 1 = B − 1 &ThickSpace; ⟹ &ThickSpace; B ∗ = ( − ∣ A ∣ ) ⋅ E 12 A − 1 = E 12 ( − ∣ A ∣ A − 1 ) = E 12 A ∗ − − − − − − − − − − − − − − − − − − − − − − − − − − − − B ∗ = ( A E 12 ) ∗ = E 12 ∗ ⋅ A ∗ = − E 12 ⋅ A ∗ = E 12 ( − A ∗ ) [ 例 2 ] 已 知 A = ( 0 1 0 1 0 0 0 0 1 ) 5 ( 1 0 0 0 5 0 0 0 3 ) ( 1 0 0 0 1 1 0 0 1 ) 4 , 则 求 A − 1 = ‾ A = ( 0 1 0 1 0 0 0 0 1 ) ( 1 0 0 0 5 0 0 0 3 ) ( 1 0 0 0 1 4 0 0 1 ) A − 1 = ( 1 0 0 0 1 4 0 0 1 ) − 1 ( 1 0 0 0 5 0 0 0 3 ) − 1 ( 0 1 0 1 0 0 0 0 1 ) − 1 = ( 1 0 0 0 1 − 4 0 0 1 ) ( 1 0 0 0 1 5 0 0 0 1 3 ) ( 0 1 0 1 0 0 0 0 1 ) = ( 1 0 0 0 1 5 − 4 3 0 0 1 3 ) ( 0 1 0 1 0 0 0 0 1 ) = ( 0 1 0 1 5 0 − 4 3 0 0 1 3 ) 4. 用 初 等 变 化 求 A − 1 [ T h ] 任 何 可 逆 阵 一 定 可 通 过 若 干 次 初 等 行 变 化 为 同 阶 单 位 阵 , P s ⋯ P 2 P 1 A = E &ThickSpace; ⟹ &ThickSpace; P s ⋯ P 2 P 1 E = A − 1 ( A ∣ E ) → ( E ∣ A − 1 ) [ 例 ] A = ( 3 2 1 1 1 1 1 0 1 ) , 求 A − 1 ( A ∣ E ) = ⋯ 草 稿 上 解 完 得 A − 1 = ( 1 2 − 1 1 2 0 1 − 1 − 1 2 1 1 2 ) \begin{aligned} \ [例1]&amp;\color{maroon}设A是3阶可逆矩阵,交换A的第1列和第2列得到B,则B^*可由(D)互换得到\\ &amp;(A)A^*的第1列与第2列\\ &amp;(B)A^*的第1行与第2行\\ &amp;(C)-A^*的第1列与第2列\\ &amp;(D)-A^*的第1行与第2行\\ &amp;AE_{12}=B,B^*=\mid B\mid B^{-1},A^*=\mid A\mid A^{-1}\\ &amp;\mid A\mid\mid E_{12}\mid=\mid B\mid\implies -\mid A\mid=\mid B\mid\\ &amp;(AE_{12})^{-1}=B^{-1}\implies E_{12}^{-1}A^{-1}=B^{-1}\implies E_{12}A^{-1}=B^{-1}\\ &amp;\implies B^*=(-\mid A\mid)\cdot E_{12}A^{-1}\\ &amp;=E_{12}(-\mid A\mid A^{-1})=E_{12}A^*\\ &amp;----------------------------\\ &amp;B^*=(AE_{12})^*=E_{12}^*\cdot A^*=-E_{12}\cdot A^*=E_{12}(-A^*)\\ [例2]&amp;\color{maroon}已知A=\begin{pmatrix}0&amp;1&amp;0\\1&amp;0&amp;0\\0&amp;0&amp;1\end{pmatrix}^5\begin{pmatrix}1&amp;0&amp;0\\0&amp;5&amp;0\\0&amp;0&amp;3\end{pmatrix}\begin{pmatrix}1&amp;0&amp;0\\0&amp;1&amp;1\\0&amp;0&amp;1\end{pmatrix}^4,则求A^{-1}=\underline{\quad}\\ &amp;A=\begin{pmatrix}0&amp;1&amp;0\\1&amp;0&amp;0\\0&amp;0&amp;1\end{pmatrix}\begin{pmatrix}1&amp;0&amp;0\\0&amp;5&amp;0\\0&amp;0&amp;3\end{pmatrix}\begin{pmatrix}1&amp;0&amp;0\\0&amp;1&amp;4\\0&amp;0&amp;1\end{pmatrix}\\ &amp;A^{-1}=\begin{pmatrix}1&amp;0&amp;0\\0&amp;1&amp;4\\0&amp;0&amp;1\end{pmatrix}^{-1}\begin{pmatrix}1&amp;0&amp;0\\0&amp;5&amp;0\\0&amp;0&amp;3\end{pmatrix}^{-1}\begin{pmatrix}0&amp;1&amp;0\\1&amp;0&amp;0\\0&amp;0&amp;1\end{pmatrix}^{-1}\\ &amp;=\begin{pmatrix}1&amp;0&amp;0\\0&amp;1&amp;-4\\0&amp;0&amp;1\end{pmatrix}\begin{pmatrix}1&amp;0&amp;0\\0&amp;\frac15&amp;0\\0&amp;0&amp;\frac13\end{pmatrix}\begin{pmatrix}0&amp;1&amp;0\\1&amp;0&amp;0\\0&amp;0&amp;1\end{pmatrix}\\ &amp;=\begin{pmatrix}1&amp;0&amp;0\\0&amp;\frac15&amp;-\frac43\\0&amp;0&amp;\frac13\end{pmatrix}\begin{pmatrix}0&amp;1&amp;0\\1&amp;0&amp;0\\0&amp;0&amp;1\end{pmatrix}\\ &amp;=\begin{pmatrix}0&amp;1&amp;0\\\frac15&amp;0&amp;-\frac43\\0&amp;0&amp;\frac13\end{pmatrix}\\ 4.&amp;\color{red}用初等变化求A^{-1}\\ [Th]&amp;任何可逆阵一定可通过若干次初等行变化为同阶单位阵,P_s\cdots P_2P_1A=E\\ &amp;\implies P_s\cdots P_2P_1E=A^{-1}\\ &amp;(A\mid E)\to(E\mid A^{-1})\\ [例]&amp;\color{maroon}A=\begin{pmatrix}3&amp;2&amp;1\\1&amp;1&amp;1\\1&amp;0&amp;1\end{pmatrix},求A^{-1}\\ &amp;(A|E)=\cdots 草稿上解完得A^{-1}=\begin{pmatrix}\frac12&amp;-1&amp;\frac12\\0&amp;1&amp;-1\\-\frac12&amp;1&amp;\frac12\end{pmatrix}\\ \end{aligned}  [1][2]4.[Th][]A3A12BBD(A)A12(B)A12(C)A12(D)A12AE12=B,B=BB1,A=AA1AE12=BA=B(AE12)1=B1E121A1=B1E12A1=B1B=(A)E12A1=E12(AA1)=E12AB=(AE12)=E12A=E12A=E12(A)A=01010000151000500031000100114,A1=A=010100001100050003100010041A1=100010041110005000310101000011=10001004110005100031010100001=100051003431010100001=051010003431A1PsP2P1A=EPsP2P1E=A1(AE)(EA1)A=311210111A1(AE)=稿A1=2102111121121

矩阵方程

基本型

{ A X = B &ThickSpace; ⟹ &ThickSpace; X = A − 1 B X A = B &ThickSpace; ⟹ &ThickSpace; X = B A − 1 A X B = C &ThickSpace; ⟹ &ThickSpace; X = A − 1 C B − 1 [ 注 ] 如 A X = B , 若 A 不 可 逆 &ThickSpace; ⟹ &ThickSpace; A ( ξ 1 ⋯ ξ n ) = ( β 1 ⋯ β n ) &ThickSpace; ⟹ &ThickSpace; ( A ξ 1 ⋯ A ξ n ) = ( β 1 ⋯ β n ) &ThickSpace; ⟹ &ThickSpace; A ξ i = β i &ThickSpace; ⟹ &ThickSpace; 非 齐 次 方 程 组 &ThickSpace; ⟹ &ThickSpace; ξ i &ThickSpace; ⟹ &ThickSpace; x = ( ξ 1 ξ 2 ⋯ ξ n ) \begin{aligned} &amp;\begin{cases} AX=B\implies X=A^{-1}B\\ XA=B\implies X=BA^{-1}\\ AXB=C\implies X=A^{-1}CB^{-1} \end{cases}\\ [注]&amp;如AX=B,若A不可逆\implies \\ &amp;A(\xi_1\cdots\xi_n)=(\beta_1\cdots\beta_n)\implies (A\xi_1\cdots A\xi_n)=(\beta_1\cdots\beta_n)\\ &amp;\implies A\xi_i=\beta_i\implies 非齐次方程组\\ &amp;\implies \xi_i\implies x=(\xi_1\xi_2\cdots\xi_n)\\ \end{aligned} []AX=BX=A1BXA=BX=BA1AXB=CX=A1CB1AX=B,AA(ξ1ξn)=(β1βn)(Aξ1Aξn)=(β1βn)Aξi=βiξix=(ξ1ξ2ξn)

化简并求解

1. 消 公 因 式 即 若 C A = C B , 且 C 可 逆 &ThickSpace; ⟹ &ThickSpace; A = B 2. 提 取 公 因 式 即 若 C A + C B &ThickSpace; ⟹ &ThickSpace; C A + C B = C ( A + B ) 3. 移 项 即 将 已 知 与 未 知 分 别 移 至 等 号 两 边 4. 常 用 公 式 1. A ∗ &ThickSpace; ⟹ &ThickSpace; 10 个 公 式 2. 穿 脱 原 则 &ThickSpace; ⟹ &ThickSpace; ( A B ) T ⋯ 3. ( A T ) − 1 = ( A − 1 ) T ( A ∗ ) − 1 = ( A − 1 ) ∗ ( A T ) ∗ = ( A ∗ ) T 4. A 2 − E = ( A + E ) ( A − E ) = ( A − E ) ( A + E ) A 3 − E = ( A − E ) ( A 2 + A + E ) \begin{aligned} 1.&amp;消公因式\\ &amp;即若CA=CB,且C可逆\implies A=B\\ 2.&amp;提取公因式\\ &amp;即若CA+CB\implies CA+CB=C(A+B)\\ 3.&amp;移项\\ &amp;即将已知与未知分别移至等号两边\\ 4.&amp;常用公式\\ &amp;1.A*\implies 10个公式\\ &amp;2.穿脱原则\implies (AB)^T\cdots\\ &amp;3.(A^T)^{-1}=(A^{-1})^T\quad (A^*)^{-1}=(A^{-1})^*\quad (A^T)^*=(A^*)^T\\ &amp;4.A^2-E=(A+E)(A-E)=(A-E)(A+E)\\ &amp;A^3-E=(A-E)(A^2+A+E)\\ \end{aligned} 1.2.3.4.CA=CBCA=BCA+CBCA+CB=C(A+B)1.A102.穿(AB)T3.(AT)1=(A1)T(A)1=(A1)(AT)=(A)T4.A2E=(A+E)(AE)=(AE)(A+E)A3E=(AE)(A2+A+E)

  [ 例 1 ] 设 A = ( 1 1 1 − 1 1 1 1 − 1 1 ) , A ∗ B ( 1 2 A ∗ ) ∗ = 8 A − 1 B + 12 E , 求 B ( 1 2 A ∗ ) ∗ = ( 1 2 ) 3 − 1 ( A ∗ ) ∗ = 1 4 ⋅ 4 1 A = A &ThickSpace; ⟹ &ThickSpace; A ∗ B A = 8 A − 1 B + 12 E &ThickSpace; ⟹ &ThickSpace; 4 A − 1 B A = 8 A − 1 B + 12 E &ThickSpace; ⟹ &ThickSpace; 4 A − 1 B ( A − 2 E ) = 12 E &ThickSpace; ⟹ &ThickSpace; A − 1 B ( A − 2 E ) = 3 E ( 即 A X B = C ) &ThickSpace; ⟹ &ThickSpace; B = A ⋅ 3 E ( A − 2 E ) − 1 = 3 A ( A − 2 E ) − 1 其 中 ( A − 2 E ) − 1 = ( − 1 1 − 1 − 1 − 1 1 1 − 1 − 1 ) − 1 = − 1 2 ( 1 1 0 0 1 1 1 0 1 ) &ThickSpace; ⟹ &ThickSpace; B = 2 A ( A − 2 E ) − 1 = ( 0 − 3 0 0 0 − 3 − 3 0 0 ) \begin{aligned} \ [例1]&amp;\color{maroon}设A=\begin{pmatrix}1&amp;1&amp;1\\-1&amp;1&amp;1\\1&amp;-1&amp;1\end{pmatrix},A^*B(\frac12A^*)^*=8A^{-1}B+12E,求B\\ &amp;(\frac12A^*)^*=(\frac12)^{3-1}(A^*)^*=\frac14\cdot4^1A=A\\ &amp;\implies A^*BA=8A^{-1}B+12E\\ &amp;\implies4A^{-1}BA=8A^{-1}B+12E\\ &amp;\implies4A^{-1}B(A-2E)=12E\\ &amp;\implies A^{-1}B(A-2E)=3E(即AXB=C)\\ &amp;\implies B=A\cdot3E(A-2E)^{-1}=3A(A-2E)^{-1}\\ &amp;其中(A-2E)^{-1}=\begin{pmatrix}-1&amp;1&amp;-1\\-1&amp;-1&amp;1\\1&amp;-1&amp;-1\end{pmatrix}^{-1}=-\frac12\begin{pmatrix}1&amp;1&amp;0\\0&amp;1&amp;1\\1&amp;0&amp;1\end{pmatrix}\\ &amp;\implies B=2A(A-2E)^{-1}=\begin{pmatrix}0&amp;-3&amp;0\\0&amp;0&amp;-3\\-3&amp;0&amp;0\end{pmatrix} \end{aligned}  [1]A=111111111,AB(21A)=8A1B+12E,B(21A)=(21)31(A)=4141A=AABA=8A1B+12E4A1BA=8A1B+12E4A1B(A2E)=12EA1B(A2E)=3E(AXB=C)B=A3E(A2E)1=3A(A2E)1(A2E)1=1111111111=21101110011B=2A(A2E)1=003300030

矩阵的秩

定义

A m × n 若 { ∃ k 阶 子 式 不 为 0 ∀ ( k + 1 ) 阶 子 式 全 为 0 &ThickSpace; ⟹ &ThickSpace; r ( A ) = k &ThickSpace; ⟹ &ThickSpace; { ∃ k 个 线 性 无 关 的 向 量 ∀ ( k + 1 ) 个 向 量 必 有 多 余 的 有 且 仅 有 k 个 线 性 无 关 向 量 \begin{aligned} &amp;A_{m\times n}若\begin{cases}\exists k阶子式不为0\\ \forall(k+1)阶子式全为0\end{cases}\implies r(A)=k\\ &amp;\implies \begin{cases}\exists k个线性无关的向量\\ \forall(k+1)个向量必有多余的\end{cases}\\ &amp;有且仅有k个线性无关向量 \end{aligned} Am×n{k0(k+1)0r(A)=k{k线(k+1)k线

公式

设 A m × n , 则 1. 若 P 可 逆 , &ThickSpace; ⟹ &ThickSpace; r ( P A ) = r ( A ) &ThickSpace; ⟹ &ThickSpace; r ( A P ) = r ( A ) 2. r ( A B ) ≤ m i n { r ( A ) , r ( B ) } 3. r ( A + B ) ≤ r ( A ) + r ( B ) 4. 若 A B = 0 &ThickSpace; ⟹ &ThickSpace; r ( A ) + r ( B ) ≤ n ( 列 数 ) 5. r ( A ∗ ) { n , r ( A ) = n 1 , r ( A ) = n − 1 0 , r ( A ) &lt; n − 1 \begin{aligned} &amp;设A_{m\times n},则\\ 1.&amp;若P可逆,\implies r(PA)=r(A)\implies r(AP)=r(A)\\ 2.&amp;r(AB)\leq min\{r(A),r(B)\}\\ 3.&amp;r(A+B)\leq r(A)+r(B)\\ 4.&amp;若AB=0\implies r(A)+r(B)\leq n(列数)\\ 5.&amp;r(A^*)\begin{cases}n,r(A)=n\\1,r(A)=n-1\\0,r(A)&lt; n-1\end{cases} \end{aligned} 1.2.3.4.5.Am×n,Pr(PA)=r(A)r(AP)=r(A)r(AB)min{r(A),r(B)}r(A+B)r(A)+r(B)AB=0r(A)+r(B)n()r(A)n,r(A)=n1,r(A)=n10,r(A)<n1

  [ 例 1 ] A 3 × 3 , B 3 × 3 , r ( A ) = 2 , r ( A B ) = 1 , B = ( 1 3 a − 1 − 2 1 2 6 − 1 ) , 则 a = ‾ 若 r ( B ) = 3 &ThickSpace; ⟹ &ThickSpace; r ( A B ) = r ( A ) &ThickSpace; ⟹ &ThickSpace; 矛 盾 &ThickSpace; ⟹ &ThickSpace; r ( B ) &lt; 3 &ThickSpace; ⟹ &ThickSpace; ∣ B ∣ = ∣ 1 3 a − 1 − 2 1 2 6 − 1 ∣ = 0 &ThickSpace; ⟹ &ThickSpace; − 2 a − 1 = 0 &ThickSpace; ⟹ &ThickSpace; a = − 1 2 [ 例 2 ] 若 A n × n , A 2 = A , 则 r ( A ) + r ( E − A ) = ‾ A 2 = A &ThickSpace; ⟹ &ThickSpace; A − A 2 = 0 &ThickSpace; ⟹ &ThickSpace; A ( E − A ) = 0 &ThickSpace; ⟹ &ThickSpace; r ( A ) + r ( E − A ) ≤ n 又 r ( A + E − A ) ≤ r ( A ) + r ( E − A ) r ( E ) = n &ThickSpace; ⟹ &ThickSpace; r ( A ) + r ( E − A ) = n [ 例 3 ] 若 A n × n , A 2 = E , 则 r ( E + A ) + r ( E − A ) = ‾ A 2 = E &ThickSpace; ⟹ &ThickSpace; E − A 2 = 0 &ThickSpace; ⟹ &ThickSpace; ( E + A ) ( E − A ) = 0 &ThickSpace; ⟹ &ThickSpace; r ( E + A ) + r ( E − A ) ≤ n 又 r ( 2 E ) ≤ r ( E + A ) + r ( E − A ) &ThickSpace; ⟹ &ThickSpace; r ( E + A ) + r ( E − A ) = n [ 例 4 ] 已 知 Q = ( 1 2 3 2 4 t 3 6 9 ) , P 3 × 3 ̸ = 0 , 且 P Q = 0 , 则 ( ) ( A ) t = 6 时 , r ( P ) = 1 ( B ) t = 6 时 , r ( P ) = 2 ( C ) t ̸ = 6 时 , r ( P ) = 1 ( D ) t ̸ = 6 时 , r ( P ) = 2 &ThickSpace; ⟹ &ThickSpace; r ( P ) + r ( Q ) ≤ 3 &ThickSpace; ⟹ &ThickSpace; 1 ≤ r ( P ) ≤ 3 − r ( Q ) r ( A ) = 0 &ThickSpace; ⟺ &ThickSpace; A = 0 当 t = 6 时 &ThickSpace; ⟹ &ThickSpace; r ( Q ) = 1 &ThickSpace; ⟹ &ThickSpace; 1 ≤ r ( P ) ≤ 2 当 t ̸ = 6 时 &ThickSpace; ⟹ &ThickSpace; r ( Q ) = 2 &ThickSpace; ⟹ &ThickSpace; 1 ≤ r ( P ) ≤ 1 故 答 案 为 C [ 例 5 ] 设 A 5 × 5 , A 2 = 0 &ThickSpace; ⟹ &ThickSpace; r ( A ∗ ) = ‾ 公 式 5 的 证 明 1. r ( A ) = n , ∣ A ∗ ∣ = ∣ A ∣ n − 1 &ThickSpace; ⟹ &ThickSpace; r ( A ∗ ) = n ( 满 秩 ) 2. r ( A ) = n − 1 &lt; n &ThickSpace; ⟹ &ThickSpace; ∣ A ∣ = 0 A A ∗ = ∣ A ∣ E = 0 &ThickSpace; ⟹ &ThickSpace; r ( A ) + r ( A ∗ ) ≤ n &ThickSpace; ⟹ &ThickSpace; r ( A ∗ ) ≤ n − r ( A ) = 1 由 r ( A ) = n − 1 &ThickSpace; ⟹ &ThickSpace; ∃ n − 1 阶 子 式 不 为 0 &ThickSpace; ⟹ &ThickSpace; ∃ A i j = ( − 1 ) i + j M i j ̸ = 0 , 故 A ∗ ̸ = 0 &ThickSpace; ⟹ &ThickSpace; r ( A ∗ ) ≥ 1 &ThickSpace; ⟹ &ThickSpace; r ( A ∗ ) = 1 3. r ( A ) &lt; n − 1 &ThickSpace; ⟹ &ThickSpace; ∃ n − 1 阶 子 式 全 为 0 &ThickSpace; ⟹ &ThickSpace; ∀ A i j 全 为 0 &ThickSpace; ⟹ &ThickSpace; A ∗ = 0 &ThickSpace; ⟹ &ThickSpace; r ( A ∗ ) = 0 [ 注 ] 1. 若 告 之 r ( A ) = k &ThickSpace; ⟹ &ThickSpace; ∃ k 阶 子 式 ̸ = 0 , ∀ k + 1 阶 子 式 全 = 0 2. 若 告 之 r ( A ) &lt; k &ThickSpace; ⟹ &ThickSpace; ∀ k 阶 子 式 全 = 0 [ 例 5 ] A ⋅ A = 0 &ThickSpace; ⟹ &ThickSpace; r ( A ) + r ( A ) ≤ 5 &ThickSpace; ⟹ &ThickSpace; r ( A ) ≤ 2 &lt; 4 , 故 r ( A ∗ ) = 0 [ 例 6 ] 设 A = ( 1 1 1 1 0 1 − 1 a 2 3 a 4 3 5 1 9 ) , 若 r ( A ∗ ) = 1 , 则 a = ‾ r ( A ∗ ) = 1 &ThickSpace; ⟹ &ThickSpace; r ( A ) = 3 &ThickSpace; ⟹ &ThickSpace; ∣ A ∣ = 0 &ThickSpace; ⟹ &ThickSpace; a = 3 o r 1 [ 注 ] 化 为 阶 梯 型 矩 阵 ( 1 1 1 1 0 1 − 1 a 2 3 a 4 3 5 1 9 ) → ( 1 1 1 1 0 1 − 1 a 0 1 a − 2 2 0 2 − 2 6 ) → ( 1 1 1 1 0 1 − 1 a 0 0 a − 1 2 − a 0 0 0 6 − 2 a ) 故 1. 若 6 − 2 a = 0 &ThickSpace; ⟹ &ThickSpace; a = 3 时 , ( 1 1 1 1 0 1 − 1 3 0 0 2 − 1 0 0 0 0 ) = r ( A ) = 3 2. 若 a = 1 时 , ( 1 1 1 1 0 1 − 1 1 0 0 0 1 0 0 0 0 ) &ThickSpace; ⟹ &ThickSpace; r ( A ) = 3 \begin{aligned} \ [例1]&amp;\color{maroon}A_{3\times3},B_{3\times3},r(A)=2,r(AB)=1,B=\begin{pmatrix}1&amp;3&amp;a\\-1&amp;-2&amp;1\\2&amp;6&amp;-1\end{pmatrix},则a=\underline{\quad}\\ &amp;若r(B)=3\implies r(AB)=r(A)\implies 矛盾\implies r(B)&lt;3\\ &amp;\implies \mid B\mid=\begin{vmatrix}1&amp;3&amp;a\\-1&amp;-2&amp;1\\2&amp;6&amp;-1\end{vmatrix}=0\\ &amp;\implies -2a-1=0\implies a=-\frac12\\ [例2]&amp;\color{maroon}若A_{n\times n},A^2=A,则r(A)+r(E-A)=\underline{\quad}\\ &amp;A^2=A\implies A-A^2=0\implies A(E-A)=0\\ &amp;\implies r(A)+r(E-A)\leq n\\ &amp;又r(A+E-A)\leq r(A)+r(E-A)\\ &amp;r(E)=n\implies r(A)+r(E-A)=n\\ [例3]&amp;\color{maroon}若A_{n\times n},A^2=E,则r(E+A)+r(E-A)=\underline{\quad}\\ &amp;A^2=E\implies E-A^2=0\\ &amp;\implies (E+A)(E-A)=0\\ &amp;\implies r(E+A)+r(E-A)\leq n\\ &amp;又r(2E)\leq r(E+A)+r(E-A)\implies r(E+A)+r(E-A)=n\\ [例4]&amp;\color{maroon}已知Q=\begin{pmatrix}1&amp;2&amp;3\\2&amp;4&amp;t\\3&amp;6&amp;9\end{pmatrix},P_{3\times3}\not=0,且PQ=0,则(\quad)\\ &amp;(A)t=6时,r(P)=1\\ &amp;(B)t=6时,r(P)=2\\ &amp;(C)t\not=6时,r(P)=1\\ &amp;(D)t\not=6时,r(P)=2\\ &amp;\implies r(P)+r(Q)\leq3\implies 1\leq r(P)\leq3-r(Q)\\ &amp;\color{red}{r(A)=0\iff A=0}\\ &amp;当t=6时\implies r(Q)=1\implies 1\leq r(P)\leq2\\ &amp;当t\not=6时\implies r(Q)=2\implies 1\leq r(P)\leq1\\ &amp;故答案为C\\ [例5]&amp;\color{maroon}设A_{5\times5},A^2=0\implies r(A^*)=\underline{\quad}\\ &amp;公式5的证明\\ &amp;1.r(A)=n,\mid A^*\mid=\mid A\mid^{n-1}\implies r(A^*)=n(满秩)\\ &amp;2.r(A)=n-1&lt; n\implies\mid A\mid=0\\ &amp;AA^*=\mid A\mid E=0\\ &amp;\implies r(A)+r(A^*)\leq n\implies r(A^*)\leq n-r(A)=1\\ &amp;\color{red}{由r(A)=n-1\implies\exists n-1阶子式不为0}\\ &amp;\color{red}{\implies\exists A_{ij}=(-1)^{i+j}M_{ij}\not=0,故A^*\not=0\implies r(A^*)\geq1}\\ &amp;\implies r(A^*)=1\\ &amp;3.r(A)&lt; n-1\implies\exists n-1阶子式全为0\implies\forall A_{ij}全为0\implies A^*=0\implies r(A^*)=0\\ [注]&amp;1.若告之r(A)=k\implies\exists k阶子式\not=0,\forall k+1阶子式全=0\\ &amp;2.若告之r(A)&lt; k\implies\forall k阶子式全=0\\ [例5]&amp;A\cdot A=0\implies r(A)+r(A)\leq5\implies r(A)\leq2&lt; 4,故r(A^*)=0\\ [例6]&amp;\color{maroon}设A=\begin{pmatrix}1&amp;1&amp;1&amp;1\\0&amp;1&amp;-1&amp;a\\2&amp;3&amp;a&amp;4\\3&amp;5&amp;1&amp;9\end{pmatrix},若r(A^*)=1,则a=\underline{\quad}\\ &amp;r(A^*)=1\implies r(A)=3\implies\mid A\mid=0\implies a=3or1\\ [注]&amp;化为阶梯型矩阵\\ &amp;\begin{pmatrix}1&amp;1&amp;1&amp;1\\0&amp;1&amp;-1&amp;a\\2&amp;3&amp;a&amp;4\\3&amp;5&amp;1&amp;9\end{pmatrix}\to\begin{pmatrix}1&amp;1&amp;1&amp;1\\0&amp;1&amp;-1&amp;a\\0&amp;1&amp;a-2&amp;2\\0&amp;2&amp;-2&amp;6\end{pmatrix}\to\begin{pmatrix}1&amp;1&amp;1&amp;1\\0&amp;1&amp;-1&amp;a\\0&amp;0&amp;a-1&amp;2-a\\0&amp;0&amp;0&amp;6-2a\end{pmatrix}\\ &amp;故1.若6-2a=0\implies a=3时,\begin{pmatrix}1&amp;1&amp;1&amp;1\\0&amp;1&amp;-1&amp;3\\0&amp;0&amp;2&amp;-1\\0&amp;0&amp;0&amp;0\end{pmatrix}=r(A)=3\\ &amp;2.若a=1时,\begin{pmatrix}1&amp;1&amp;1&amp;1\\0&amp;1&amp;-1&amp;1\\0&amp;0&amp;0&amp;1\\0&amp;0&amp;0&amp;0\end{pmatrix}\implies r(A)=3\\ \end{aligned}  [1][2][3][4][5][][5][6][]A3×3,B3×3,r(A)=2,r(AB)=1,B=112326a11,a=r(B)=3r(AB)=r(A)r(B)<3B=112326a11=02a1=0a=21An×n,A2=A,r(A)+r(EA)=A2=AAA2=0A(EA)=0r(A)+r(EA)nr(A+EA)r(A)+r(EA)r(E)=nr(A)+r(EA)=nAn×n,A2=E,r(E+A)+r(EA)=A2=EEA2=0(E+A)(EA)=0r(E+A)+r(EA)nr(2E)r(E+A)+r(EA)r(E+A)+r(EA)=nQ=1232463t9,P3×3̸=0,PQ=0,()(A)t=6r(P)=1(B)t=6r(P)=2(C)t̸=6r(P)=1(D)t̸=6r(P)=2r(P)+r(Q)31r(P)3r(Q)r(A)=0A=0t=6r(Q)=11r(P)2t̸=6r(Q)=21r(P)1CA5×5,A2=0r(A)=51.r(A)=n,A=An1r(A)=n()2.r(A)=n1<nA=0AA=AE=0r(A)+r(A)nr(A)nr(A)=1r(A)=n1n10Aij=(1)i+jMij̸=0,A̸=0r(A)1r(A)=13.r(A)<n1n10Aij0A=0r(A)=01.r(A)=kk̸=0,k+1=02.r(A)<kk=0AA=0r(A)+r(A)5r(A)2<4,r(A)=0A=1023113511a11a49,r(A)=1,a=r(A)=1r(A)=3A=0a=3or11023113511a11a491000111211a221a261000110011a101a2a62a1.62a=0a=31000110011201310=r(A)=32.a=11000110011001110r(A)=3

考法

  • 化行阶梯形矩阵,其台阶数=秩
  • 用公式(5个)

3向量组

向量组与方程组

预备知识

线性相关与线性无关

  [ 定 义 1 ] 若 ∃ 一 组 不 全 为 0 的 数 k 1 , k 2 , ⋯ &ThinSpace; , k n , 使 k 1 α 1 + k 2 α 2 + ⋯ + k n α n = 0 成 立 , 称 α 1 , α 2 , ⋯ &ThinSpace; , α n 线 性 相 关 [ 定 义 2 ] 若 使 k 1 α 1 + k 2 α 2 + ⋯ + k n α n = 0 成 立 , 必 须 要 求 k 1 = k 2 = ⋯ = k n = 0 , 称 α 1 , α 2 , ⋯ &ThinSpace; , α n 线 性 无 关 即 { a 11 x 1 + ⋯ + a 1 n x n = 0 a 21 x 2 + ⋯ + a 2 n x n = 0 ⋮ a m 1 x 1 + ⋯ + a m n x n = 0 &ThickSpace; ⟹ &ThickSpace; A X = 0 ( 齐 次 方 程 组 ) A = ( a 1 1 ⋯ a 1 n ⋮ ⋱ ⋮ a n 1 ⋯ a n n ) ( 系 数 矩 阵 ) x = ( x 1 ⋯ x n ) T ( 未 知 数 矩 阵 ) { a 11 x 1 + ⋯ + a 1 n x n = b 1 a 21 x 2 + ⋯ + a 2 n x n = b 2 ⋮ a m 1 x 1 + ⋯ + a m n x n = b n &ThickSpace; ⟹ &ThickSpace; A X = β ( 非 齐 次 方 程 组 ) β = ( b 1 b 2 ⋯ b n ) T ( 自 由 项 矩 阵 ) [ 注 ] α 1 ⋯ α n 相 关 &ThickSpace; ⟺ &ThickSpace; ( α 1 ⋯ α n ) ( x 1 ⋮ x n ) = 0 有 非 0 解 α 1 ⋯ α n 无 关 &ThickSpace; ⟺ &ThickSpace; ( α 1 ⋯ α n ) ( x 1 ⋮ x n ) = 0 只 有 0 解 \begin{aligned} \ [定义1]&amp;若\exists一组不全为0的数k_1,k_2,\cdots,k_n,使k_1\alpha_1+k_2\alpha_2+\cdots+k_n\alpha_n=0成立,\\ &amp;称\alpha_1,\alpha_2,\cdots,\alpha_n线性相关\\ [定义2]&amp;若使k_1\alpha_1+k_2\alpha_2+\cdots+k_n\alpha_n=0成立,必须要求k_1=k_2=\cdots=k_n=0,\\ &amp;称\alpha_1,\alpha_2,\cdots,\alpha_n线性无关\\ &amp;即\begin{cases}a_{11}x_1+\cdots+a_{1n}x_n=0\\a_{21}x_2+\cdots+a_{2n}x_n=0\\\vdots\\a_{m1}x_1+\cdots+a_{mn}x_n=0\end{cases}\implies AX=0(齐次方程组)\\ &amp;A=\begin{pmatrix}a_11&amp;\cdots&amp;a_{1n}\\\vdots&amp;\ddots&amp;\vdots\\a_{n1}&amp;\cdots&amp;a_{nn}\end{pmatrix}(系数矩阵)\\ &amp;x=\begin{pmatrix}x_1&amp;\cdots&amp;x_n\end{pmatrix}^T(未知数矩阵)\\ &amp;\begin{cases}a_{11}x_1+\cdots+a_{1n}x_n=b_1\\a_{21}x_2+\cdots+a_{2n}x_n=b_2\\\vdots\\a_{m1}x_1+\cdots+a_{mn}x_n=b_n\end{cases}\implies AX=\beta(非齐次方程组)\\ &amp;\beta=\begin{pmatrix}b_1&amp;b_2&amp;\cdots&amp;b_n\end{pmatrix}^T(自由项矩阵)\\ [注]&amp;\alpha_1\cdots\alpha_n相关\iff\begin{pmatrix}\alpha_1&amp;\cdots&amp;\alpha_n\end{pmatrix}\begin{pmatrix}x_1\\\vdots\\x_n\end{pmatrix}=0有非0解\\ &amp;\alpha_1\cdots\alpha_n无关\iff\begin{pmatrix}\alpha_1&amp;\cdots&amp;\alpha_n\end{pmatrix}\begin{pmatrix}x_1\\\vdots\\x_n\end{pmatrix}=0只有0解\\ \end{aligned}  [1][2][]0k1,k2,,kn,使k1α1+k2α2++knαn=0α1,α2,,αn线使k1α1+k2α2++knαn=0k1=k2==kn=0α1,α2,,αn线a11x1++a1nxn=0a21x2++a2nxn=0am1x1++amnxn=0AX=0()A=a11an1a1nann()x=(x1xn)T()a11x1++a1nxn=b1a21x2++a2nxn=b2am1x1++amnxn=bnAX=β()β=(b1b2bn)T()α1αn(α1αn)x1xn=00α1αn(α1αn)x1xn=00

线性表示

  [ 定 义 ] 若 ∃ 一 组 数 k 1 , k 2 , ⋯ &ThinSpace; , k n , 使 k 1 α 1 + k 2 α 2 + ⋯ + k n α n = β 成 立 , 则 称 β 可 由 α 1 , α 2 , ⋯ &ThinSpace; , α n 线 性 表 示 否 则 , β 不 可 由 α 1 , α 2 , ⋯ &ThinSpace; , α n 线 性 表 示 [ 注 ] β 可 由 α 1 , α 2 , ⋯ &ThinSpace; , α n 表 示 &ThickSpace; ⟺ &ThickSpace; ( α 1 ⋯ α n ) ( x 1 ⋮ x n ) = β 有 解 β 不 可 由 α 1 , α 2 , ⋯ &ThinSpace; , α n 表 示 &ThickSpace; ⟺ &ThickSpace; ( α 1 ⋯ α n ) ( x 1 ⋮ x n ) = β 无 解 \begin{aligned} \ [定义]&amp;若\exists一组数k_1,k_2,\cdots,k_n,使k_1\alpha_1+k_2\alpha_2+\cdots+k_n\alpha_n=\beta成立,\\ &amp;则称\beta可由\alpha_1,\alpha_2,\cdots,\alpha_n线性表示\\ &amp;否则,\beta不可由\alpha_1,\alpha_2,\cdots,\alpha_n线性表示\\ [注]&amp;\beta可由\alpha_1,\alpha_2,\cdots,\alpha_n表示\iff\begin{pmatrix}\alpha_1&amp;\cdots&amp;\alpha_n\end{pmatrix}\begin{pmatrix}x_1\\\vdots\\x_n\end{pmatrix}=\beta有解\\ &amp;\beta不可由\alpha_1,\alpha_2,\cdots,\alpha_n表示\iff\begin{pmatrix}\alpha_1&amp;\cdots&amp;\alpha_n\end{pmatrix}\begin{pmatrix}x_1\\\vdots\\x_n\end{pmatrix}=\beta无解 \end{aligned}  [][]k1,k2,,kn,使k1α1+k2α2++knαn=ββα1,α2,,αn线βα1,α2,,αn线βα1,α2,,αn(α1αn)x1xn=ββα1,α2,,αn(α1αn)x1xn=β

解的理论

齐次AX=0

求 解 方 法 与 步 骤 1. 将 A 作 初 等 行 变 换 &ThickSpace; ⟹ &ThickSpace; 行 阶 梯 形 矩 阵 B &ThickSpace; ⟹ &ThickSpace; r ( A ) = 台 阶 数 = r 2. 按 列 找 出 一 个 秩 为 r 的 子 矩 阵 , 则 剩 余 位 置 的 未 知 数 即 设 为 自 由 变 量 3. 按 基 础 解 析 的 定 义 反 着 写 若 r ( A ) &lt; n &ThickSpace; ⟹ &ThickSpace; A X = 0 有 非 0 解 ( 无 穷 多 解 ) 则 ξ 1 ⋯ ξ n − r 满 足 { 1. 是 A X = 0 的 解 2. 线 性 无 关 3. 个 数 = n − r ( A ) &ThickSpace; ⟹ &ThickSpace; ξ 1 ⋯ ξ n − r 为 A X = 0 的 一 个 基 础 解 析 \begin{aligned} &amp;\color{red}{求解方法与步骤}\\ 1.&amp;将A作初等行变换\implies 行阶梯形矩阵B\implies r(A)=台阶数=r\\ 2.&amp;按列找出一个秩为r的子矩阵,则剩余位置的未知数即设为自由变量\\ 3.&amp;按基础解析的定义反着写\\ &amp;若r(A)&lt; n\implies AX=0有非0解(无穷多解)\\ &amp;则\xi_1\cdots\xi_{n-r}满足\begin{cases}1.是AX=0的解\\2.线性无关\\3.个数=n-r(A)\end{cases}\\ &amp;\implies\xi_1\cdots\xi_{n-r}为AX=0的一个基础解析\\ \end{aligned} 1.2.3.ABr(A)==rrr(A)<nAX=00ξ1ξnr1.AX=02.线3.=nr(A)ξ1ξnrAX=0

  [ 例 1 ] 求 解 { x 1 + 5 x 2 − x 3 − x 4 = 0 x 1 − 2 x 2 + x 3 + 3 x 4 = 0 3 x 1 + 8 x 2 − x 3 + x 4 = 0 x 1 − 9 x 2 + 3 x 3 + 7 x 4 = 0 1. A = ( 1 5 − 1 − 1 1 − 2 1 3 3 8 − 1 1 1 − 9 3 7 ) → ( 1 5 − 1 − 1 0 − 7 2 4 0 0 0 0 0 0 0 0 ) &ThickSpace; ⟹ &ThickSpace; r ( A ) = 2 2. s = n − r ( A ) 自 由 空 间 的 维 度 = 自 由 度 − 真 实 的 约 束 个 数 3. s = n − r ( A ) = 2 { ξ 1 = ( − 3 7 2 7 1 0 ) T ξ 2 = ( − 13 7 4 7 0 1 ) T &ThickSpace; ⟹ &ThickSpace; 通 解 ξ = k 1 ( − 3 7 2 7 1 0 ) + k 2 ( − 13 7 4 7 0 1 ) , ∀ k 1 , k 2 \begin{aligned} \ [例1]&amp;\color{maroon}求解\begin{cases}x_1+5x_2-x_3-x_4=0\\x_1-2x_2+x_3+3x_4=0\\3x_1+8x_2-x_3+x_4=0\\x_1-9x_2+3x_3+7x_4=0\end{cases}\\ &amp;1.A=\begin{pmatrix}1&amp;5&amp;-1&amp;-1\\1&amp;-2&amp;1&amp;3\\3&amp;8&amp;-1&amp;1\\1&amp;-9&amp;3&amp;7\end{pmatrix}\to\begin{pmatrix}1&amp;5&amp;-1&amp;-1\\0&amp;-7&amp;2&amp;4\\0&amp;0&amp;0&amp;0\\0&amp;0&amp;0&amp;0\end{pmatrix}\implies r(A)=2\\ &amp;2.s=n-r(A)\quad 自由空间的维度=自由度-真实的约束个数\\ &amp;3.s=n-r(A)=2\\ &amp;\begin{cases}\xi_1=\begin{pmatrix}-\frac37&amp;\frac27&amp;1&amp;0\end{pmatrix}^T\\\xi_2=\begin{pmatrix}-\frac{13}7&amp;\frac47&amp;0&amp;1\end{pmatrix}^T\end{cases}\implies通解\xi=k_1\begin{pmatrix}-\frac37\\\frac27\\1\\0\end{pmatrix}+k_2\begin{pmatrix}-\frac{13}7\\\frac47\\0\\1\end{pmatrix},\forall k_1,k_2\\ \end{aligned}  [1]x1+5x2x3x4=0x12x2+x3+3x4=03x1+8x2x3+x4=0x19x2+3x3+7x4=01.A=11315289111313171000570012001400r(A)=22.s=nr(A)=3.s=nr(A)=2{ξ1=(737210)Tξ2=(7137401)Tξ=k1737210+k27137401,k1,k2

非齐次AX=β

1. 写 出 A X = 0 &ThickSpace; ⟹ &ThickSpace; ξ 1 , ξ 2 ⋯ &ThinSpace; , ξ n − r 2. 写 出 A X = β 的 一 个 特 解 ξ ∗ 3. &ThickSpace; ⟹ &ThickSpace; 通 解 ξ = k 1 ξ 1 + ⋯ + k n − r ξ n − r + ξ ∗ \begin{aligned} 1.&amp;写出AX=0\implies \xi_1,\xi_2\cdots,\xi_{n-r}\\ 2.&amp;写出AX=\beta的一个特解\xi^*\\ 3.&amp;\implies 通解\xi=k_1\xi_1+\cdots+k_{n-r}\xi_{n-r}+\xi^*\\ \end{aligned} 1.2.3.AX=0ξ1,ξ2,ξnrAX=βξξ=k1ξ1++knrξnr+ξ

  [ 例 1 ] 求 解 { x 1 + 5 x 2 − x 3 − x 4 = − 1 x 1 − 2 x 2 + x 3 + 3 x 4 = 3 3 x 1 + 8 x 2 − x 3 + x 4 = 1 x 1 − 9 x 2 + 3 x 3 + 7 x 4 = 7 ( A ∣ β ) → ( 1 5 − 1 − 1 ∣ − 1 0 − 7 2 4 ∣ 4 0 0 0 0 ∣ 0 0 0 0 0 ∣ 0 ) { ξ 1 = ( − 3 7 2 7 1 0 ) T ξ 2 = ( − 13 7 4 7 0 1 ) T ξ ∗ = ( 13 7 − 4 7 0 0 ) T 故 ξ = k 1 ( − 3 7 2 7 1 0 ) + k 2 ( − 13 7 4 7 0 1 ) + ( 13 7 − 4 7 0 0 ) , ∀ k 1 , k 2 \begin{aligned} \ [例1]&amp;\color{maroon}求解\begin{cases}x_1+5x_2-x_3-x_4=-1\\x_1-2x_2+x_3+3x_4=3\\3x_1+8x_2-x_3+x_4=1\\x_1-9x_2+3x_3+7x_4=7\end{cases}\\ &amp;(A|\beta)\to\begin{pmatrix}1&amp;5&amp;-1&amp;-1&amp;|&amp;-1\\0&amp;-7&amp;2&amp;4&amp;|&amp;4\\0&amp;0&amp;0&amp;0&amp;|&amp;0\\0&amp;0&amp;0&amp;0&amp;|&amp;0\end{pmatrix}\\ &amp;\begin{cases}\xi_1=\begin{pmatrix}-\frac37&amp;\frac27&amp;1&amp;0\end{pmatrix}^T\\\xi_2=\begin{pmatrix}-\frac{13}7&amp;\frac47&amp;0&amp;1\end{pmatrix}^T\\\xi^*=\begin{pmatrix}\frac{13}7&amp;-\frac47&amp;0&amp;0\end{pmatrix}^T\end{cases}\\ &amp;故\xi=k_1\begin{pmatrix}-\frac37\\\frac27\\1\\0\end{pmatrix}+k_2\begin{pmatrix}-\frac{13}7\\\frac47\\0\\1\end{pmatrix}+\begin{pmatrix}\frac{13}7\\-\frac47\\0\\0\end{pmatrix},\forall k_1,k_2 \end{aligned}  [1]x1+5x2x3x4=1x12x2+x3+3x4=33x1+8x2x3+x4=1x19x2+3x3+7x4=7(Aβ)10005700120014001400ξ1=(737210)Tξ2=(7137401)Tξ=(7137400)Tξ=k1737210+k27137401+7137400,k1,k2

具体型

1. β 与 α 1 , α 2 , ⋯ &ThinSpace; , α n 关 系 1. x 1 α 1 + x 2 α 2 + ⋯ + x n α n = β ( 1 ) 建 方 程 组 ( 1 ) 建 方 程 组 ( α 1 ⋯ α n ) ( x 1 ⋮ x n ) = β ( α 1 ⋯ α n ) ( x 1 ⋮ x n ) = β ( 2 ) ( A ∣ β ) → 行 变 化 至 阶 梯 型 行 列 式 ( 2 ) ( A ∣ β ) → 行 变 化 至 阶 梯 型 行 列 式 ( 3 ) 讨 论 ( 3 ) 讨 论 1 ) r ( A ) ̸ = r ( A ∣ β ) &ThickSpace; ⟺ &ThickSpace; 1 ) r ( A ) ̸ = r ( A ∣ β ) &ThickSpace; ⟺ &ThickSpace; A X = β 无 解 β 不 可 由 α 1 , ⋯ &ThinSpace; , α n 表 示 2 ) r ( A ) = r ( A ∣ β ) = n &ThickSpace; ⟺ &ThickSpace; 2 ) r ( A ) = r ( A ∣ β ) = n &ThickSpace; ⟺ &ThickSpace; A X = β 有 唯 一 解 β 可 由 α 1 , ⋯ &ThinSpace; , α n 线 性 表 示 3 ) r ( A ) = r ( A ∣ β ) &lt; n &ThickSpace; ⟺ &ThickSpace; 3 ) r ( A ) = r ( A ∣ β ) &lt; n &ThickSpace; ⟺ &ThickSpace; A X = β 有 无 穷 多 解 β 可 由 α 1 , ⋯ &ThinSpace; , α n 无 穷 表 示 \begin{aligned} \begin{array}{l|l} 1.\beta与\alpha_1,\alpha_2,\cdots,\alpha_n关系 &amp; 1.x_1\alpha_1+x_2\alpha_2+\cdots+x_n\alpha_n=\beta \\ (1)建方程组 &amp; (1)建方程组 \\ \begin{pmatrix}\alpha_1&amp;\cdots&amp;\alpha_n\end{pmatrix}\begin{pmatrix}x_1\\\vdots\\x_n\end{pmatrix}=\beta &amp; \begin{pmatrix}\alpha_1&amp;\cdots&amp;\alpha_n\end{pmatrix}\begin{pmatrix}x_1\\\vdots\\x_n\end{pmatrix}=\beta \\ (2)(A|\beta)\to行变化至阶梯型行列式 &amp; (2)(A|\beta)\to行变化至阶梯型行列式 \\ (3)讨论 &amp; (3)讨论 \\ \quad 1)r(A)\not=r(A|\beta)\iff &amp; \quad 1)r(A)\not=r(A|\beta)\iff AX=\beta无解\\ \quad \beta不可由\alpha_1,\cdots,\alpha_n表示\\ \quad 2)r(A)=r(A|\beta)=n\iff &amp; \quad 2)r(A)=r(A|\beta)=n\iff AX=\beta 有唯一解\\ \quad \beta可由\alpha_1,\cdots,\alpha_n线性表示\\ \quad 3)r(A)=r(A|\beta)&lt; n\iff &amp; \quad 3)r(A)=r(A|\beta)&lt; n\iff AX=\beta 有无穷多解\\ \quad \beta可由\alpha_1,\cdots,\alpha_n无穷表示 \end{array} \end{aligned} 1.βα1,α2,,αn(1)(α1αn)x1xn=β(2)(Aβ)(3)1)r(A)̸=r(Aβ)βα1,,αn2)r(A)=r(Aβ)=nβα1,,αn线3)r(A)=r(Aβ)<nβα1,,αn1.x1α1+x2α2++xnαn=β(1)(α1αn)x1xn=β(2)(Aβ)(3)1)r(A)̸=r(Aβ)AX=β2)r(A)=r(Aβ)=nAX=β3)r(A)=r(Aβ)<nAX=β

  [ 例 1 ] 设 α 1 = ( 1 3 0 5 ) T , α 2 = ( 1 2 1 4 ) T , α 3 = ( 1 1 2 3 ) T , α 4 = ( 1 1 2 4 ) T , β = ( 1 a 3 b ) T , 问 a , b 为 何 值 时 ( 1 ) β 不 可 由 α 1 , α 2 , α 3 , α 4 表 示 ( 2 ) β 可 由 α 1 , α 2 , α 3 , α 4 表 示 , 且 写 出 表 达 式 [ 变 式 ] 设 { x 1 + x 2 + x 3 + x 4 = 1 3 x 1 + 2 x 2 + x 3 + x 4 = a x 2 + 2 x 3 + 2 x 4 = 3 5 x 1 + 4 x 2 + 3 x 3 + 4 x 4 = b 问 a , b 取 何 值 时 , ( 1 ) 方 程 组 无 解 ? ( 2 ) 方 程 组 有 解 , 有 解 时 写 出 全 部 解 ( A ∣ β ) → ( 1 0 − 1 − 1 ∣ − 2 0 1 2 2 ∣ 3 0 0 0 1 ∣ b − 2 0 0 0 0 ∣ a ) 1. 当 a ̸ = 0 , ∀ b 时 , r ( A ) ̸ = r ( A ∣ β ) &ThickSpace; ⟹ &ThickSpace; A X = β 无 解 ( β 不 可 由 α i 表 示 ) 2. 当 a = 0 , ∀ b 时 , r ( A ) = r ( A ∣ β ) = 3 &lt; 4 &ThickSpace; ⟹ &ThickSpace; s = 4 − 3 = 1 , { ξ 1 = ( 1 − 2 1 0 ) T ξ ∗ = ( b − 4 7 − 2 b 0 b − 2 ) T &ThickSpace; ⟹ &ThickSpace; 通 解 ξ = k ξ 1 + ξ ∗ = k ( 1 − 2 1 0 ) + ( b − 4 7 − 2 b 0 b − 2 ) , ∀ k &ThickSpace; ⟹ &ThickSpace; ( k + b − 4 − 2 k + 7 − 2 b k b − 2 ) &ThickSpace; ⟹ &ThickSpace; β = ( k + b − 4 ) α 1 + ( − 2 k + 7 − 2 b ) α 2 + k α 3 + ( b − 2 ) α 4 , ∀ k \begin{aligned} \ [例1]&amp;\color{maroon}设\alpha_1=\begin{pmatrix}1&amp;3&amp;0&amp;5\end{pmatrix}^T,\alpha_2=\begin{pmatrix}1&amp;2&amp;1&amp;4\end{pmatrix}^T,\alpha_3=\begin{pmatrix}1&amp;1&amp;2&amp;3\end{pmatrix}^T,\alpha_4=\begin{pmatrix}1&amp;1&amp;2&amp;4\end{pmatrix}^T,\\ &amp;\color{maroon}\beta=\begin{pmatrix}1&amp;a&amp;3&amp;b\end{pmatrix}^T,问a,b为何值时\\ &amp;\color{maroon}(1)\beta不可由\alpha_1,\alpha_2,\alpha_3,\alpha_4表示\\ &amp;\color{maroon}(2)\beta可由\alpha_1,\alpha_2,\alpha_3,\alpha_4表示,且写出表达式\\ [变式]&amp;\color{maroon}设\begin{cases}x_1+x_2+x_3+x_4=1\\3x_1+2x_2+x_3+x_4=a\\x_2+2x_3+2x_4=3\\5x_1+4x_2+3x_3+4x_4=b\end{cases}\\ &amp;\color{maroon}问a,b取何值时,\\ &amp;\color{maroon}(1)方程组无解?\\ &amp;\color{maroon}(2)方程组有解,有解时写出全部解\\ &amp;(A|\beta)\to\begin{pmatrix}1&amp;0&amp;-1&amp;-1&amp;|&amp;-2\\0&amp;1&amp;2&amp;2&amp;|&amp;3\\0&amp;0&amp;0&amp;1&amp;|&amp;b-2\\0&amp;0&amp;0&amp;0&amp;|&amp;a\end{pmatrix}\\ &amp;1.当a\not=0,\forall b时,r(A)\not=r(A|\beta)\implies AX=\beta无解(\beta不可由\alpha_i表示)\\ &amp;2.当a=0,\forall b时,r(A)=r(A|\beta)=3&lt; 4\\ &amp;\implies s=4-3=1,\begin{cases}\xi_1=\begin{pmatrix}1&amp;-2&amp;1&amp;0\end{pmatrix}^T\\\xi^*=\begin{pmatrix}b-4&amp;7-2b&amp;0&amp;b-2\end{pmatrix}^T\end{cases}\\ &amp;\implies 通解\xi=k\xi_1+\xi^*=k\begin{pmatrix}1\\-2\\1\\0\end{pmatrix}+\begin{pmatrix}b-4\\7-2b\\0\\b-2\end{pmatrix},\forall k\\ &amp;\implies \begin{pmatrix}k+b-4\\-2k+7-2b\\k\\b-2\end{pmatrix}\\ &amp;\implies\beta=(k+b-4)\alpha_1+(-2k+7-2b)\alpha_2+k\alpha_3+(b-2)\alpha_4,\forall k\\ \end{aligned}  [1][]α1=(1305)T,α2=(1214)T,α3=(1123)T,α4=(1124)T,β=(1a3b)T,a,b(1)βα1,α2,α3,α4(2)βα1,α2,α3,α4x1+x2+x3+x4=13x1+2x2+x3+x4=ax2+2x3+2x4=35x1+4x2+3x3+4x4=ba,b(1)(2)(Aβ)100001001200121023b2a1.a̸=0,br(A)̸=r(Aβ)AX=β(βαi)2.a=0,br(A)=r(Aβ)=3<4s=43=1,{ξ1=(1210)Tξ=(b472b0b2)Tξ=kξ1+ξ=k1210+b472b0b2,kk+b42k+72bkb2β=(k+b4)α1+(2k+72b)α2+kα3+(b2)α4,k

抽象型

  [ 例 1 ] 4 阶 矩 阵 A = ( α 1 α 2 α 3 α 4 ) , α 1 , α 2 线 性 无 关 . 若 β = α 1 + 2 α 2 + α 3 = α 1 + α 2 + α 3 + α 4 = α 1 + 3 α 2 + α 3 + 2 α 4 求 A X = β 的 通 解 ( α 1 α 2 α 3 α 4 ) ( 1 2 1 0 ) = β ( α 1 α 2 α 3 α 4 ) ( 1 1 1 1 ) = β ( α 1 α 2 α 3 α 4 ) ( 1 3 1 2 ) = β 又 α 1 , α 2 无 关 &ThickSpace; ⟹ &ThickSpace; r ( A ) ≥ 2 ξ 1 ∗ = ( 1 2 1 0 ) , ξ 2 ∗ = ( 1 1 1 1 ) , ξ 3 ∗ = ( 1 3 1 2 ) ξ 1 ∗ − ξ 2 ∗ = ( 0 1 0 − 1 ) , ξ 2 ∗ − ξ 3 ∗ = ( 0 − 2 0 − 1 ) &ThickSpace; ⟹ &ThickSpace; s = 4 − r ( A ) ≥ 2 &ThickSpace; ⟹ &ThickSpace; r ( A ) ≤ 2 &ThickSpace; ⟹ &ThickSpace; r ( A ) = 2 , s = 2 故 ξ = k 1 ( 0 1 0 − 1 ) + k 2 ( 0 − 2 0 − 1 ) + ( 1 2 1 0 ) , ∀ k 1 , k 2 \begin{aligned} \ [例1]&amp;\color{maroon}4阶矩阵A=\begin{pmatrix}\alpha_1&amp;\alpha_2&amp;\alpha_3&amp;\alpha_4\end{pmatrix},\alpha_1,\alpha_2线性无关.\\ &amp;\color{maroon}若\beta=\alpha_1+2\alpha_2+\alpha_3=\alpha_1+\alpha_2+\alpha_3+\alpha_4=\alpha_1+3\alpha_2+\alpha_3+2\alpha_4\\ &amp;\color{maroon}求AX=\beta的通解\\ &amp;\begin{pmatrix}\alpha_1&amp;\alpha_2&amp;\alpha_3&amp;\alpha_4\end{pmatrix}\begin{pmatrix}1\\2\\1\\0\end{pmatrix}=\beta\\ &amp;\begin{pmatrix}\alpha_1&amp;\alpha_2&amp;\alpha_3&amp;\alpha_4\end{pmatrix}\begin{pmatrix}1\\1\\1\\1\end{pmatrix}=\beta\\ &amp;\begin{pmatrix}\alpha_1&amp;\alpha_2&amp;\alpha_3&amp;\alpha_4\end{pmatrix}\begin{pmatrix}1\\3\\1\\2\end{pmatrix}=\beta\\ &amp;又\alpha_1,\alpha_2无关\implies r(A)\geq2\\ &amp;\xi_1^*=\begin{pmatrix}1\\2\\1\\0\end{pmatrix},\xi_2^*=\begin{pmatrix}1\\1\\1\\1\end{pmatrix},\xi_3^*=\begin{pmatrix}1\\3\\1\\2\end{pmatrix}\\ &amp;\xi_1^*-\xi_2^*=\begin{pmatrix}0\\1\\0\\-1\end{pmatrix},\xi_2^*-\xi_3^*=\begin{pmatrix}0\\-2\\0\\-1\end{pmatrix}\\ &amp;\implies s=4-r(A)\geq2\implies r(A)\leq2\implies r(A)=2,s=2\\ &amp;故\xi=k_1\begin{pmatrix}0\\1\\0\\-1\end{pmatrix}+k_2\begin{pmatrix}0\\-2\\0\\-1\end{pmatrix}+\begin{pmatrix}1\\2\\1\\0\end{pmatrix},\forall k_1,k_2 \end{aligned}  [1]4A=(α1α2α3α4),α1,α2线.β=α1+2α2+α3=α1+α2+α3+α4=α1+3α2+α3+2α4AX=β(α1α2α3α4)1210=β(α1α2α3α4)1111=β(α1α2α3α4)1312=βα1,α2r(A)2ξ1=1210,ξ2=1111,ξ3=1312ξ1ξ2=0101,ξ2ξ3=0201s=4r(A)2r(A)2r(A)=2,s=2ξ=k10101+k20201+1210,k1,k2

4相似理论

相似理论与二次型

相似理论

A的特征值与特征向量

  [ 定 义 ] 给 出 A m × n , 若 ∃ 一 个 数 λ , 使 A ξ = λ ξ , ξ ̸ = 0 , 则 称 λ 是 A 的 特 征 值 , ξ 是 A 的 属 于 λ 的 特 征 向 量 [ 分 析 ] λ ξ − A ξ = 0 , ξ ̸ = 0 &ThickSpace; ⟹ &ThickSpace; ( λ E − A ) ξ = 0 , ξ ̸ = 0 &ThickSpace; ⟹ &ThickSpace; ( λ E − A ) X = 0 有 非 0 解 &ThickSpace; ⟹ &ThickSpace; r ( λ E − A ) &lt; n &ThickSpace; ⟹ &ThickSpace; ∣ λ E − A ∣ = 0 ( 特 征 方 程 ) &ThickSpace; ⟹ &ThickSpace; λ i ( 重 根 按 重 数 计 ) &ThickSpace; ⟹ &ThickSpace; ( λ i E − A ) X = 0 \begin{aligned} \ [定义]&amp;给出A_{m\times n},若\exists 一个数\lambda,使A\xi=\lambda\xi,\xi\not=0,\\ &amp;则称\lambda是A的特征值,\xi是A的属于\lambda的特征向量\\ [分析]&amp;\lambda\xi-A\xi=0,\xi\not=0\\ &amp;\implies (\lambda E-A)\xi=0,\xi\not=0\implies(\lambda E-A)X=0有非0解\\ &amp;\implies r(\lambda E-A)&lt; n\implies \color{maroon}{\mid\lambda E-A\mid=0(特征方程)}\\ &amp;\implies \lambda_i(重根按重数计)\implies (\lambda_i E-A)X=0\\ \end{aligned}  [][]Am×n,λ,使Aξ=λξ,ξ̸=0,λAξAλλξAξ=0,ξ̸=0(λEA)ξ=0,ξ̸=0(λEA)X=00r(λEA)<nλEA=0()λi()(λiEA)X=0

  [ 例 1 ] A = ( 2 2 − 1 2 5 − 4 − 2 − 4 5 ) , 求 A 的 λ 与 ξ ∣ λ E − A ∣ = ∣ λ − 2 − 2 2 − 2 λ − 5 4 2 4 λ − 5 ∣ = 0 &ThickSpace; ⟹ &ThickSpace; λ 1 = λ 2 = 1 , λ 3 = 10 1. λ 1 = λ 2 = 1 &ThickSpace; ⟹ &ThickSpace; ( − 1 − 2 2 − 2 − 4 4 2 4 − 4 ) → ( 1 2 − 2 0 0 0 0 0 0 ) s = 3 − 1 = 2 { ξ 1 = ( − 2 1 0 ) T ξ 2 = ( 2 0 1 ) T &ThickSpace; ⟹ &ThickSpace; 1 的 特 征 向 量 为 k 1 ξ 1 + k 2 ξ 2 , 但 k 1 , k 2 不 同 是 为 0 2. λ 3 = 10 &ThickSpace; ⟹ &ThickSpace; ( 8 − 2 2 − 2 5 4 2 4 5 ) → ( 2 4 5 0 1 1 0 0 0 ) ξ 3 = ( − 1 2 − 1 1 ) T , 10 的 ξ = k 3 ξ 3 , k 3 ̸ = 0 \begin{aligned} \ [例1]&amp;\color{maroon}A=\begin{pmatrix}2&amp;2&amp;-1\\2&amp;5&amp;-4\\-2&amp;-4&amp;5\end{pmatrix},求A的\lambda与\xi\\ &amp;\mid\lambda E-A\mid=\begin{vmatrix}\lambda-2&amp;-2&amp;2\\-2&amp;\lambda-5&amp;4\\2&amp;4&amp;\lambda-5\end{vmatrix}=0\\ &amp;\implies \lambda_1=\lambda_2=1,\lambda_3=10\\ &amp;1.\lambda_1=\lambda_2=1\implies\begin{pmatrix}-1&amp;-2&amp;2\\-2&amp;-4&amp;4\\2&amp;4&amp;-4\end{pmatrix}\to\begin{pmatrix}1&amp;2&amp;-2\\0&amp;0&amp;0\\0&amp;0&amp;0\end{pmatrix}\\ &amp;s=3-1=2\begin{cases}\xi_1=\begin{pmatrix}-2&amp;1&amp;0\end{pmatrix}^T\\\xi_2=\begin{pmatrix}2&amp;0&amp;1\end{pmatrix}^T\end{cases}\\ &amp;\implies 1的特征向量为k_1\xi_1+k_2\xi_2,但k_1,k_2不同是为0\\ &amp;2.\lambda_3=10\implies \begin{pmatrix}8&amp;-2&amp;2\\-2&amp;5&amp;4\\2&amp;4&amp;5\end{pmatrix}\to\begin{pmatrix}2&amp;4&amp;5\\0&amp;1&amp;1\\0&amp;0&amp;0\end{pmatrix}\\ &amp;\xi_3=\begin{pmatrix}-\frac12&amp;-1&amp;1\end{pmatrix}^T,10的\xi=k_3\xi_3,k_3\not=0\\ \end{aligned}  [1]A=222254145,AλξλEA=λ2222λ5424λ5=0λ1=λ2=1,λ3=101.λ1=λ2=1122244244100200200s=31=2{ξ1=(210)Tξ2=(201)T1k1ξ1+k2ξ2,k1,k202.λ3=10822254245200410510ξ3=(2111)T,10ξ=k3ξ3,k3̸=0

相似

  [ 定 义 ] 若 ∃ E 可 逆 矩 阵 P , 使 P − 1 A P = Λ , 则 A 相 似 于 Λ , 记 A ∼ Λ P P − 1 A P = P Λ &ThickSpace; ⟺ &ThickSpace; A P = P Λ &ThickSpace; ⟺ &ThickSpace; A ( ξ 1 ξ 2 ⋯ ξ n ) = ( ξ 1 ξ 2 ⋯ ξ n ) ( λ 1 λ 2 ⋱ λ n ) &ThickSpace; ⟺ &ThickSpace; ( A ξ 1 A ξ 2 ⋯ A ξ n ) = ( λ 1 ξ 1 λ 2 ξ 2 ⋯ λ n ξ n ) &ThickSpace; ⟺ &ThickSpace; A ξ 1 = λ i ξ i , i = 1 , 2 , ⋯ &ThinSpace; , n 故 A 可 以 与 Λ 相 似 &ThickSpace; ⟺ &ThickSpace; A 有 n 个 线 性 无 关 的 β [ 例 ] A = ( 2 2 − 2 2 5 − 4 − 2 − 4 5 ) , 求 A 的 λ 与 ξ Λ = ( 1 0 0 0 1 0 0 0 10 ) 令 P = ( − 2 2 − 1 2 1 0 − 1 0 1 1 ) &ThickSpace; ⟹ &ThickSpace; P − 1 A P = Λ \begin{aligned} \ [定义]&amp;若\exists E可逆矩阵P,使P^{-1}AP=\Lambda,则A相似于\Lambda,记A\sim\Lambda\\ &amp;PP^{-1}AP=P\Lambda\iff AP=P\Lambda\iff\\ &amp;A(\xi_1\xi_2\cdots\xi_n)=(\xi_1\xi_2\cdots\xi_n)\begin{pmatrix}\lambda_1&amp;&amp;&amp;\\&amp;\lambda_2&amp;&amp;\\&amp;&amp;\ddots&amp;\\&amp;&amp;&amp; \lambda_n\end{pmatrix}\\ &amp;\iff\begin{pmatrix}A\xi_1&amp;A\xi_2&amp;\cdots&amp;A\xi_n\end{pmatrix}=\begin{pmatrix}\lambda_1\xi_1&amp;\lambda_2\xi_2&amp;\cdots&amp;\lambda_n\xi_n\end{pmatrix}\\ &amp;\iff A\xi_1=\lambda_i\xi_i,i=1,2,\cdots,n\\ &amp;故A可以与\Lambda 相似\iff A有n个线性无关的\beta\\ [例]&amp;\color{maroon}A=\begin{pmatrix}2&amp;2&amp;-2\\2&amp;5&amp;-4\\-2&amp;-4&amp;5\end{pmatrix},求A的\lambda与\xi\\ &amp;\Lambda=\begin{pmatrix}1&amp;0&amp;0\\0&amp;1&amp;0\\0&amp;0&amp;10\end{pmatrix}\\ &amp;令P=\begin{pmatrix}-2&amp;2&amp;-\frac12\\1&amp;0&amp;-1\\0&amp;1&amp;1\end{pmatrix}\implies P^{-1}AP=\Lambda \end{aligned}  [][]EP使P1AP=Λ,AΛ,AΛPP1AP=PΛAP=PΛA(ξ1ξ2ξn)=(ξ1ξ2ξn)λ1λ2λn(Aξ1Aξ2Aξn)=(λ1ξ1λ2ξ2λnξn)Aξ1=λiξi,i=1,2,,nAΛAn线βA=222254245,AλξΛ=1000100010P=2102012111P1AP=Λ

二次型化标准型

  [ 例 ] f = 2 x 1 2 + 5 x 2 2 + 5 x 3 2 + 4 x 1 x 2 − 4 x 1 x 3 − 8 x 2 x 3 = ( x 1 x 2 x 3 ) ( 2 2 − 2 2 5 − 4 − 2 − 4 5 ) ( x 1 x 2 x 3 ) f = x T A X &ThickSpace; ⟺ &ThickSpace; ( P Y ) T A P Y = Y T P T A P Y = Y T P − 1 A P Y = Y T Λ Y \begin{aligned} \ [例]&amp;\color{maroon}f=2x_1^2+5x_2^2+5x_3^2+4x_1x_2-4x_1x_3-8x_2x_3\\ &amp;\color{maroon}=\begin{pmatrix}x_1&amp;x_2&amp;x_3\end{pmatrix}\begin{pmatrix}2&amp;2&amp;-2\\2&amp;5&amp;-4\\-2&amp;-4&amp;5\end{pmatrix}\begin{pmatrix}x_1\\x_2\\x_3\end{pmatrix}\\ &amp;f=x^TAX\iff(PY)^TAPY\\ &amp;=Y^TP^TAPY=Y^TP^{-1}APY=Y^T\Lambda Y \end{aligned}  []f=2x12+5x22+5x32+4x1x24x1x38x2x3=(x1x2x3)222254245x1x2x3f=xTAX(PY)TAPY=YTPTAPY=YTP1APY=YTΛY

附录

矩阵取行列式

1. ∣ A B ∣ = ∣ A ∣ ∣ B ∣ 2. ∣ k A ∣ = k n ∣ A ∣ 3. ∣ A − 1 ∣ = 1 ∣ A ∣ 4. ∣ A ∗ ∣ = ∣ A ∣ n − 1 5. ∣ ( A ∗ ) ∗ ∣ = ∣ A ∣ ( n − 1 ) 2 = ∣ A ∣ n 2 − 2 n + 1 6. ∣ E i j ∣ = − 1 , ∣ E i j ( k ) ∣ = − 1 , ∣ E i ( k ) ∣ = k \begin{aligned} &amp;1.\mid AB\mid=\mid A\mid\mid B\mid\\ &amp;2.\mid kA\mid=k^n\mid A\mid\\ &amp;3.\mid A^{-1}\mid=\frac1{\mid A\mid}\\ &amp;4.\mid A^*\mid=\mid A\mid^{n-1}\\ &amp;5.\mid (A^* )^*\mid=\mid A\mid^{(n-1)^2}=\mid A\mid^{n^2-2n+1}\\ &amp;6.\mid E_{ij}\mid=-1,\mid E_{ij}(k)\mid=-1,\mid E_i(k)\mid=k\\ \end{aligned} 1.AB=AB2.kA=knA3.A1=A14.A=An15.(A)=A(n1)2=An22n+16.Eij=1,Eij(k)=1,Ei(k)=k

求逆

1. ( A − 1 ) − 1 = A 2. ( A B ) − 1 = B − 1 A − 1 3. ( k A ) − 1 = 1 k A − 1 4. ( A T ) − 1 = ( A − 1 ) T ( A ∗ ) − 1 = ( A − 1 ) ∗ 5. ∣ A − 1 ∣ = 1 ∣ A ∣ 6. A − 1 = 1 ∣ A ∣ A ∗ 7. E i j − 1 = E i j E i j − 1 ( k ) = E i j ( − k ) E i − 1 ( k ) = E i ( 1 k ) \begin{aligned} &amp;1.(A^{-1})^{-1}=A\\ &amp;2.(AB)^{-1}=B^{-1}A^{-1}\\ &amp;3.(kA)^{-1}=\frac1kA^{-1}\\ &amp;4.(A^T)^{-1}=(A^{-1})^T\quad (A^*)^{-1}=(A^{-1})^*\\ &amp;5.|A^{-1}|=\frac1{|A|}\\ &amp;6.A^{-1}=\frac1{\mid A\mid}A^*\\ &amp;7.E_{ij}^{-1}=E_{ij}\quad E_{ij}^{-1}(k)=E_{ij}(-k)\quad E_i^{-1}(k)=E_i(\frac1k)\\ \end{aligned} 1.(A1)1=A2.(AB)1=B1A13.(kA)1=k1A14.(AT)1=(A1)T(A)1=(A1)5.A1=A16.A1=A1A7.Eij1=EijEij1(k)=Eij(k)Ei1(k)=Ei(k1)

求伴随矩阵

1. A A ∗ = A ∗ A = ∣ A ∣ E 2. A − 1 = 1 ∣ A ∣ A ∗ ( k A ) ∗ = k n − 1 A ∗ 3. ∣ A ∗ ∣ = ∣ A ∣ n − 1 A ∗ = ∣ A ∣ A − 1 4. ( A ∗ ) ∗ = ∣ A ∣ n − 2 A ∣ ( A ∗ ) ∗ ∣ = ∣ A ∣ ( n − 1 ) 2 = ∣ A ∣ n 2 − 2 n + 1 5. ( A B ) ∗ = B ∗ A ∗ 6. ( A ∗ ) − 1 = ( A − 1 ) ∗ = A ∣ A ∣ , ( A T ) ∗ = ( A ∗ ) T 7. r ( A ∗ ) { n , r ( A ) = n 1 , r ( A ) = n − 1 0 , r ( A ) &lt; n − 1 8. E i j ∗ = − E i j E i j ∗ ( k ) = E i j ( − k ) E i ∗ ( k ) = k E i ( 1 k ) \begin{aligned} &amp;1.AA^*=A^*A=\mid A\mid E\\ &amp;2.A^{-1}=\frac1{\mid A\mid}A^*\quad (kA)^*=k^{n-1}A^*\\ &amp;3.\mid A^*\mid=\mid A\mid^{n-1}\quad A^*=\mid A\mid A^{-1}\\ &amp;4.(A^*)^*=\mid A\mid^{n-2}A\quad \mid (A^*)^*\mid=\mid A\mid^{(n-1)^2}=\mid A\mid^{n^2-2n+1}\\ &amp;5.(AB)^*=B^*A^*\\ &amp;6.(A^*)^{-1}=(A^{-1})^*=\frac{A}{\mid A\mid},(A^T)^*=(A^*)^T\\ &amp;7.r(A^*)\begin{cases}n,r(A)=n\\1,r(A)=n-1\\0,r(A)&lt; n-1\end{cases}\\ &amp;8.E_{ij}^*=-E_{ij}\quad E_{ij}^*(k)=E_{ij}(-k)\quad E_i^*(k)=kE_i(\frac1k) \end{aligned} 1.AA=AA=AE2.A1=A1A(kA)=kn1A3.A=An1A=AA14.(A)=An2A(A)=A(n1)2=An22n+15.(AB)=BA6.(A)1=(A1)=AA,(AT)=(A)T7.r(A)n,r(A)=n1,r(A)=n10,r(A)<n18.Eij=EijEij(k)=Eij(k)Ei(k)=kEi(k1)

  • 19
    点赞
  • 99
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值