1网络模型可视化
可视化训练模型
python ~/caffe-master/python/draw_net.py ~/caffe-master/examples/mnist/mnist_autoencoder.prototxt mnist_autoencoder.png
生成的图片如下:
2 IPython访问网络模型
可视化分类过程
首先安装ipython,之后需要在图形界面的命令行(即在ssh连接命令行下无法执行画图操作)执行ipython qtconsole
参考这里
在执行caffe.io.load_image(caffe_root + 'examples/images/cat.jpg')
时报错如下
No to_python (by-value) converter found for C++ type: boost::shared_ptr<caffe::Blob<float> >
解决方案是
1.boost版本为 1.6,修改python/caffe/_caffe.cpp ,在大概257行的位置注册 Blobs shared pointer.
// Fix for caffe pythonwrapper for boost 1.6
boost::python::register_ptr_to_python<boost::shared_ptr<Blob<Dtype> > >();
// End fix
bp::class_<Blob<Dtype>, boost::shared_ptr<Blob<Dtype> >, boost::noncopyable>(
"Blob", bp::no_init)
2.重新编译caffe
3权重可视化
获取权重
net.params[layer][0].data//权重W
net.params[layer][1].data//偏置bias
4特征图可视化
获取特征图数据
net.blobs['conv'].data
5参考
1.Classification: Instant Recognition with Caffe,这里