【SPOJ 5971】LCMSum

【题目】

洛谷传送门

Description

Given n, calculate the sum LCM(1,n) + LCM(2,n) + … + LCM(n,n), where LCM(i,n) denotes the Least Common Multiple of the integers i and n.

Input

The first line contains T the number of test cases. Each of the next T lines contain an integer n.

Output

Output T lines, one for each test case, containing the required sum.

Sample Input

3
1
2
5

Sample Output

1
4
55

Hint

Constraints 1 <= T <= 300000 1 <= n <= 1000000


【分析】

我们要求的是

∑ i = 1 n l c m ( i , n ) \sum_{i=1}^nlcm(i,n) i=1nlcm(i,n)

l c m lcm lcm 换成 g c d gcd gcd 就是

∑ i = 1 n i × n gcd ⁡ ( i , n ) \sum_{i=1}^n\frac{i\times n}{\gcd(i,n)} i=1ngcd(i,n)i×n

这个式子可以巧妙的转换成

1 2 ( ∑ i = 1 n − 1 i × n gcd ⁡ ( i , n ) + ∑ i = 1 n − 1 ( n − i ) × n gcd ⁡ ( n − i , n ) ) + n \frac{1}{2}(\sum_{i=1}^{n-1}\frac{i\times n}{\gcd(i,n)}+\sum_{i=1}^{n-1}\frac{(n-i)\times n}{\gcd(n-i,n)})+n 21(i=1n1gcd(i,n)i×n+i=1n1gcd(ni,n)(ni)×n)+n

根据辗转相减法, gcd ⁡ ( i , n ) = gcd ⁡ ( n − i , n ) \gcd(i,n)=\gcd(n-i,n) gcd(i,n)=gcd(ni,n),因此可以继续化简

1 2 ∑ i = 1 n − 1 n 2 gcd ⁡ ( i , n ) + n \frac1 2\sum_{i=1}^{n-1}\frac{n^2}{\gcd(i,n)}+n 21i=1n1gcd(i,n)n2+n

也就是说,我们现在的目标就是求出

∑ i = 1 n − 1 n 2 gcd ⁡ ( i , n ) \sum_{i=1}^{n-1}\frac{n^2}{\gcd(i,n)} i=1n1gcd(i,n)n2

我们枚举 gcd ⁡ \gcd gcd,把式子转化成

∑ d ∣ n n 2 d ∑ i = 1 n − 1 [ &ThickSpace; gcd ⁡ ( i , n ) = d &ThickSpace; ] \sum_{d|n}\frac{n^2}{d}\sum_{i=1}^{n-1}[\;\gcd(i,n)=d\;] dndn2i=1n1[gcd(i,n)=d]

转换为 gcd ⁡ = 1 \gcd=1 gcd=1 的形式

∑ d ∣ n n 2 d ∑ i = 1 , i ≠ n n d [ &ThickSpace; gcd ⁡ ( i , n d ) = 1 &ThickSpace; ] \sum_{d|n}\frac{n^2}{d}\sum_{i=1,i\ne n}^{\frac{n}{d}}[\;\gcd(i,\frac{n}{d})=1\;] dndn2i=1,i̸=ndn[gcd(i,dn)=1]

发现后面部分跟欧拉函数的解析式一样( φ ( n ) = ∑ i = 1 n [ &ThickSpace; gcd ⁡ ( i , n ) = 1 &ThickSpace; ] \varphi(n)=\sum\limits_{i=1}^n[\;\gcd(i,n)=1\;] φ(n)=i=1n[gcd(i,n)=1]

用欧拉函数转换一下就是

∑ d ∣ n , d ≠ n n 2 × φ ( n d ) d \sum_{d|n,d\ne n}\frac{n^2\times \varphi(\frac{n}{d})}{d} dn,d̸=ndn2×φ(dn)

把一个 n n n 提出来,也就是

n ∑ d ∣ n , d ≠ n n d × φ ( n d ) = n ∑ d ∣ n , d ≠ 1 d × φ ( d ) n\sum_{d|n,d\ne n}\frac{n}{d}\times\varphi(\frac{n}{d})=n\sum_{d|n,d\ne1}d\times \varphi(d) ndn,d̸=ndn×φ(dn)=ndn,d̸=1d×φ(d)

然后线性筛出欧拉函数值,预处理一下就可以了。


【代码】

#include<cstdio>
#include<cstring>
#include<algorithm>
#define N 1000005
using namespace std;
bool mark[N];
int prime[N],phi[N];
long long ans[N];
void linear_sieves()
{
	int i,j,sum=0;
	memset(mark,true,sizeof(mark));
	mark[0]=mark[1]=false;phi[1]=1;
	for(i=2;i<N;++i)
	{
		if(mark[i])  prime[++sum]=i,phi[i]=i-1;
		for(j=1;j<=sum&&i*prime[j]<N;++j)
		{
			mark[i*prime[j]]=false;
			if(i%prime[j])  phi[i*prime[j]]=phi[i]*phi[prime[j]];
			else  {phi[i*prime[j]]=phi[i]*prime[j];break;}
		}
	}
}
void prework()
{
	int i,j;
	for(i=1;i<N;++i)
	  for(j=2;i*j<N;++j)
	    ans[i*j]+=1ll*j*phi[j];
	for(i=1;i<N;++i)  ans[i]=ans[i]*i/2+i;
}
int main()
{
	int n,i,x;
	scanf("%d",&n);
	linear_sieves();
	prework();
	for(i=1;i<=n;++i)
	{
		scanf("%d",&x);
		printf("%lld\n",ans[x]);
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值