Jensen不等式及其应用

Jensen不等式的形式有很多种,这里重点关注有关于随机变量期望的形式。

1 Jensen不等式

Jensen不等式:已知函数 ϕ : R → R \phi: \mathbb{R}\to\mathbb{R} ϕ:RR为凸函数,则有 ϕ [ E ( X ) ] ≤ E [ ϕ ( X ) ] \phi[\text{E}(X)]\leq \text{E}[\phi(X)] ϕ[E(X)]E[ϕ(X)]

有时候,需要用到离散形式的Jensen不等式: { a j } \{a_j\} { aj}是一系列非负权重,满足 ∑ j = 1 m a j = 1 \sum_{j=1}^m a_j=1 j=1maj=1 { x j } \{x_j\} { xj}是一系列任意实数,对于凸函数 ϕ : R → R \phi: \mathbb{R}\to\mathbb{R} ϕ:RR,有
ϕ ( ∑ j = 1 m a j x j ) ≤ ∑ j = 1 m a j ϕ ( x j ) \phi\left(\sum_{j=1}^m a_j x_j\right) \leq \sum_{j=1}^m a_j \phi(x_j) ϕ(j=1majxj)j=1majϕ(xj)
只需将原期望形式的Jensen不等式中的随机变量取成离散的,并令 P ( X = x j ) = a j P(X=x_j)=a_j P(X=xj)=aj,即可得到上式。

2 条件Jensen不等式

将不等式两边的期望都取为条件期望的形式,不等式依然成立。

条件Jensen不等式:已知函数 ϕ : R → R \phi: \mathbb{R}\to\mathbb{R} ϕ:RR为凸函数,则有 ϕ [ E ( X ∣ Y ) ] ≤ E [ ϕ ( X ) ∣ Y ] \phi[\text{E}(X|Y)]\leq \text{E}[\phi(X)|Y] ϕ[E(XY)]E[ϕ(X)Y]

来看一个应用:在 Var ( X ) < ∞ \text{Var}(X)<\infty Var(X)<的条件下,利用条件Jensen不等式,可以证明 Var [ E ( X ∣ Y ) ] ≤ Var ( X ) \text{Var}[\text{E}(X|Y)]\leq \text{Var}(X) Var[E(XY)]Var(X)

证明如下:
[ E ( X ∣ Y ) − E ( X ) ] 2 = [ E ( X ∣ Y ) ] 2 + [ E ( X ) ] 2 − 2 E ( X ∣ Y ) E ( X ) ≤ E ( X 2 ∣ Y ) + [ E ( X ) ] 2 − 2 E ( X ∣ Y ) E ( X ) \begin{aligned} &[\text{E}(X|Y)-\text{E}(X)]^2 \\ =& [\text{E}(X|Y)]^2+[\text{E}(X)]^2 - 2\text{E}(X|Y)\text{E}(X)\\ \leq & \text{E}(X^2|Y)+[\text{E}(X)]^2 - 2\text{E}(X|Y)\text{E}(X) \end{aligned} =[E(XY)E(X)]2[E(XY)]2+[E(X)]22E(XY)E(X)E(X2Y)+[E(X)]22E(XY)E(X)

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值