简述组件和逆变器的配比[分布式光伏]

文章讨论了光伏系统中组件与逆变器的配比原则,指出DC/AC比值不是一个固定值,而是基于实际情况的估算。以5KW组件为例,解释了为何不一定要配5KW逆变器,并提供了如何根据组件参数和环境因素确定配比的方法。此外,还强调了电压匹配和电流考虑的重要性,以及如何通过案例分析验证配比的可行性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简述组件和逆变器的配比[分布式光伏] - 知乎 (zhihu.com)

是不是5KW的组件就配5KW的逆变器呢?答案很明确——不是

那我们又该怎么配,5KW的逆变器到底配多少合适,总听到有人会说按1.2比例配,有人会说按1.1的比例配……众说风云,这些比值是哪来的又有什么含义?

其实我们我常说的比值指的是DC/AC,也就是光伏组件的功率/光伏逆变器的功率,那我们首先来看下这个比值是什么:

上面是一个光伏系统的简图,光伏组件发出的直流电(DC)经过光伏逆变器逆变成交流电(AC)进入电网,那么整过过程中光伏逆变器只是把直流电变成交流电,俗称的DC/AC的比值就是光伏组件的安装量和光伏并网逆变器最大交流输出的比值。

我们以5KW的光伏组件安装量为例:

这个比值为1.25,意思是我装了5KW的光伏组件,但是由于实际安装地点的经纬度、倾角、朝向等一系列因素的影响,光伏组件最终产生的直流电也就4KW,那么这个时候选择4KW的光伏逆变器就可以了,并不需要5KW的光伏逆变器。

(注:组件的功率单位一般标为wp,如255wp,p是peak的意思,一般是指组件标准测试条件:(大气质量AM1.5, 辐照度1000W/m², 电池温度25°C)下的测量值, 而实际情况并非如此。)

所以DC/AC更多时候是一个经验值,而不是一个固定值,当有实际项目支撑的时候,我们可以根据实际情况去获得DC/AC的比值作为对当前选型时的支撑。

首次安装的时候,针对不同地区组件与逆变器容量配比,可以上网查询DC/AC的理论值,或向他人咨询经验值,当具有一定经验后可以用自己的经验值来代替。

这样完成DC和AC的最佳配比后还要注意光伏组串的电压与逆变器的电压范围是否匹配以及逆变器的输入路数是否满足。

常见的逆变器是根据晶硅组件的特性开发的,目前光伏系统要求的最大电压为1000V,对于电压的配置除了同一路MPPT电压需要相等外,还需要考虑逆变器的MPPT电压范围,确保组件的工作电压在MPPT电压范围内,否则会导致逆变器的输出效率不高。

在计算的时候关注组件的一些关键性参数就可以了:

1 开路电压(Voc)

未形成回路之前,也就是逆变器并网发电之前的电压,该电压会受到温度系数的影响。

2 最大功率点的工作电压(Vmppt)

工作后形成回路,也就是逆变器并网发电之后的最大工作电压。

3 短路电流(Isc)

组件短接时,通过的电流。

4 最大功率点的工作电流(Imppt)

工作后形成回路,最大功率点的电流。

5 开路电压温度系数

以-0.3%/℃为例,温度每升高一度,开路电压下降0.3%.

注:最低温度作为参考时,但是也需要考虑最低温度是凌晨3点左右,然而此时光伏组件处于不工作状态,当组串电压与逆变器输入最大电压有些小差距时可以特殊考虑。

案例分析:

项目现场在A地,冬天光照良好,极低温度为零下25摄氏度,组件采用110块265W组件,逆变器采用25KW光伏逆变器,确定可行性。相关信息:

组件信息: Voc:38.26V,Vmpp:31.11V,Isc:8.92A, Impp:8.52A,温度系数(Voc):-0.330%/℃;

逆变器信息: 最大直流输入功率:32500KW,最大输入电压:1000V, Vmpp: 260V~850V, 输入路数: 6路,Mppt路数:2路,输入电流: 27A/27A;

根据网络查询DC/AC为1.17。

1)首先确认功率配比,组件功率为265*110=29150W,A地区DC/AC配比为1.17,即25KW逆变器可以接25kW*1.17=29.25kW,和组件功率匹配,且在最大直流输入范围内。

2) 电压匹配: 组件分为5串,每串22块;开路电压为38.11V,每串电压在标准条件下约为38.11V*22≈838.42V,考虑开路电压温度系数,极低温度下的每串开路电压增加值:38.11V*0.33%*22*(50)≈138V,那么每串组件的端电压为838.42+138=976.42V,小于光伏逆变器电压要求最大值。

两项都确认完成后,且电流显然在范围内,即可确认该配比可行。

内容概要:《2024年中国城市低空经济发展指数报告》由36氪研究院发布,指出低空经济作为新质生产力的代表,已成为中国经济新的增长点。报告从发展环境、资金投入、创新能力、基础支撑发展成效五个维度构建了综合指数评价体系,评估了全国重点城市的低空经济发展状况。北京深圳在总指数中名列前茅,分别以91.2684.53的得分领先,展现出强大的资金投入、创新能力基础支撑。低空经济主要涉及无人机、eVTOL(电动垂直起降飞行器)直升机等产品,广泛应用于农业、物流、交通、应急救援等领域。政策支持、市场需求技术进步共同推动了低空经济的快速发展,预计到2026年市场规模将突破万亿元。 适用人群:对低空经济发展感兴趣的政策制定者、投资者、企业研究人员。 使用场景及目标:①了解低空经济的定义、分类发展驱动力;②掌握低空经济的主要应用场景市场规模预测;③评估各城市在低空经济发展中的表现潜力;④为政策制定、投资决策企业发展提供参考依据。 其他说明:报告强调了政策监管、产业生态建设区域融合错位的重要性,提出了加强法律法规建设、人才储备基础设施建设等建议。低空经济正加速向网络化、智能化、规模化集聚化方向发展,各地应找准自身比较优势,实现差异化发展。
数据集一个高质量的医学图像数据集,专门用于脑肿瘤的检测分类研究以下是关于这个数据集的详细介绍:该数据集包含5249张脑部MRI图像,分为训练集验证集。每张图像都标注了边界框(Bounding Boxes),并按照脑肿瘤的类型分为四个类别:胶质瘤(Glioma)、脑膜瘤(Meningioma)、无肿瘤(No Tumor)垂体瘤(Pituitary)。这些图像涵盖了不同的MRI扫描角度,包括矢状面、轴面冠状面,能够全面覆盖脑部解剖结构,为模型训练提供了丰富多样的数据基础。高质量标注:边界框是通过LabelImg工具手动标注的,标注过程严谨,确保了标注的准确性可靠性。多角度覆盖:图像从不同的MRI扫描角度拍摄,包括矢状面、轴面冠状面,能够全面覆盖脑部解剖结构。数据清洗与筛选:数据集在创建过程中经过了彻底的清洗,去除了噪声、错误标注质量不佳的图像,保证了数据的高质量。该数据集非常适合用于训练验证深度学习模型,以实现脑肿瘤的检测分类。它为开发医学图像处理中的计算机视觉应用提供了坚实的基础,能够帮助研究人员开发人员构建更准确、更可靠的脑肿瘤诊断系统。这个数据集为脑肿瘤检测分类的研究提供了宝贵的资源,能够帮助研究人员开发出更准确、更高效的诊断工具,从而为脑肿瘤患者的早期诊断治疗规划提供支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值