PDE约束优化控制问题-固定参数pinn,DAL对比

本文探讨了PDE约束优化控制问题,通过算例1和算例2,比较了深度学习方法中的固定参数PINN、DALNN和DAL算法的性能。在算例中,展示了三种算法的解决方案,并通过结果对比,分析了它们在解决偏微分方程和优化控制问题上的差异。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

算例1引入

{  minimize  J ( y , u ) : = 1 2

PDE约束优化控制问题是指在优化问题中存在偏微分方程(Partial Differential Equation, PDE约束控制问题。常见的PDE约束包括椭圆型、抛物型和双曲型方程等。 而间断问题是指在优化控制问题中,相关参数或变量会突然发生改变,即存在间断点的情况。间断问题的出现常常是由于系统的特性突变、外部扰动或控制策略的调整等原因引起的。 解决PDE约束优化控制问题的间断问题,可以采用以下方法: 1. 近似法:通过使用适当的数值方法,将偏微分方程转化为一系列离散点上的代数方程,然后利用求解代数方程的方法求解。在这种方法下,需要考虑间断点对数值方法的影响,并采取相应的调整措施。 2. 多模型方法:将间断问题转化为多个连续的子问题,每个子问题对应一段不连续的参数或变量。然后在每段连续区间上求解连续的PDE约束优化控制问题,最后将所有段的解整合起来。这种方法的关键是确定每个段的边界条件,以及在段之间实现平滑过渡。 3. 非光滑控制方法:通过使用非光滑控制理论,考虑到间断点的存在,建立非光滑控制模型,并在该模型下进行求解。这种方法的优势是能够处理复杂的间断问题,但需要深入研究非光滑控制理论及其应用。 总之,解决PDE约束优化控制问题求解的间断问题是一个具有挑战性的任务,需要合适的数值方法、数学模型和算法来克服。不同的方法适用于不同的问题,具体的选择应根据具体问题的特点和要求来决定。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

谨慎付费(看不懂试读博客不要订阅)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值