CSAMT简介一

可控源音频大地电磁方法简介

1、概述

可控源音频大地电磁法(英文名称:Controlled-Sourse Audio-frequency Magnetotelluric,简称CSAMT)是一种控制接收区位于远离发射源的远场的可控源电磁测量方法。它是基于音频大地电磁法(Audio Magnetotelluric,AMT)和大地电磁测深法(Magnetotelluric,MT)的基础发展起来的,通过扫描特定的频率范围,通过后续反演处理,可以生成地面的深度剖面电阻率模型,大地电磁法的主要优点是可以具有相当显著深度穿透。
CSAMT方法测量的在测点位置上的正交且水平的电场和磁场(如 E x , H y E_x,H_y Ex,Hy),通过它们的比值来反演地下电阻率的特性分布情况,该方法普遍用于矿产资源、油气、地热即工程勘查等许多领域之中。

2、特点(zonge.com,geophysics.inc)

1、相较于AMT和MT方法测量天然源的电场和磁场在较宽频带范围内的波动,CSAMT使用人工发射源取代自然源,这三种方法在相互比较时各有优缺点。CSAMT方法的主要优势是信号更强,因此更具有一致性。这使得处理和解释更加容易。CSAMT方法的数据采集速度比AMT和MT测量快得多,可以降低总体测量成本。
2、CSAMT方法的主要缺点与“近场”效应有关,它会扭曲数据,不易后续的反演解释。为了克服这个问题,CSAMT发射机和接收器的分离、定向和间隔要通过检查可用的TDEM或电阻率测深数据仔细确定。
3、可控源音频大地电磁法工作频率范围为 1 0 − 1 ∼ 1 0 4 10^{-1}\sim10^{4} 101104Hz,在此频段可忽略位移电流的作用,地下介质和空气的磁导率相接近。
4、CSEM / CSAMT在绘制20 ~ 1000米深度范围时非常有用。垂直分辨率是深度的5%到20%,横向分辨率由测点站距决定。
5、静位移效应(现象),所谓静态效应是指当近地表存在局部导电性不均匀体时,电流流过不均匀体表面而在其上形成“积累电荷”,由此产生一个与外电流场成正比(比例系数不随频率变化)的附加电场。其影响的结果是,各电磁场分量对测深频率按出现比例出现放缩,从而使绘于双对数坐标系中的频率测深曲线,沿视电阻率轴(即纵轴)发生上下平移。当局部不均匀体为低阻体时,测深曲线向下平移;而若为高阻体,则向上平移。

3、正演方法

1、正演计算方法多使用有限元法,因为正演的问题是一个准静态问题,而且有场源分布、起伏地表的影响。使用的麦克斯韦方程组形式多为积分形式,由于场源附近的电场和磁场变化非常迅速,如何处理场源奇异性的策略通常有两种:(1)采取将电磁场总场分离成背景场和二次场的策略;(2)采用伪 δ函数来代替场源直接计算总场的策略。
2、通常,主场是计算存在解析公式的一维结构的。这种经典的主场和次场分离对于复杂结构是无效的,因为确定合适的背景结构是困难的。Mitsuhata在考虑地形的CSAMT二维数值模拟的研究中所述:当地下介质复杂的情况下,很难找到一个简单的背景场构造,而采用伪 δ函数来代替场源直接计算总场的策略不存在这个问题,因此更适合于模拟复杂地质结构。在受控源电磁数据建模中,通常将电磁场划分为主(背景)场和二次(散射)场,以避免源奇异性,只对异常物体引起的二次场进行数值计算。然而,这种传统的方案对于缺乏简单背景结构的复杂结构并无效(Yuji Mitsuhata)。

3.1直接计算总场(钟苏美等)

理论公式

在电偶极子或者水平线圈激发情况下,总电场强度矢量 E \mathbf{E} E和总磁场强度矢量 H \mathbf{H} H相互作用的关系满足麦克斯韦方程:
{ ∮ H ⋅ d l = ∬ ( σ E + J s ) ⋅ d S ∮ E ⋅ d l = i μ 0 ω ∬ H ⋅ d S \begin{cases} \oint{\mathbf{H}\cdot\mathrm{d}\mathbf{l}}=\iint\left(\sigma\mathbf{E}+\mathbf{J}^s\right)\cdot\mathrm{d}\mathbf{S} \\ \oint{\mathbf{E}\cdot\mathrm{d}\mathbf{l}}=i\mu_0\omega\iint{\mathbf{H}}\cdot\mathrm{d}\mathbf{S} \end{cases} {Hdl=(σE+Js)dSEdl=iμ0ωHdS式中:ω表示角频率; μ 0 \mu_0 μ0为真空磁导率;σ为介质的电导率;E表示电场强度;H表示磁场强度; J s \mathbf{J}^s Js为源电流密度。

场源奇异性处理(Yuji Mitsuhata)

使用伪 δ函数代替场源直接模拟总场以解决场源的奇异性,伪 δ \delta δ函数表达式如下:
δ ( x − x 0 ) = 1 2 τ { 0 ( x − x 0 ≤ − 2 τ ) ( x − x 0 + 2 τ ) 2 2 τ 2 − 2 τ < ( x − x 0 ) ≤ − τ − ( x − x 0 + 2 τ ) 2 2 τ 2 + 2 ( x − x 0 + 2 τ ) τ 2 − 1 − τ < ( x − x 0 ) ≤ τ ( x − x 0 + 2 τ ) 2 2 τ 2 − 4 ( x − x 0 + 2 τ ) τ 2 + 8 τ < ( x − x 0 ) ≤ 2 τ 0 2 τ < ( x − x 0 ) \begin{equation} \delta(x-x_0)=\dfrac{1}{2\tau} \begin{cases} 0\qquad&(x-x_0\le-2\tau) \\\dfrac{(x-x_0+2\tau)^{2}}{2\tau^2}\qquad&-2\tau\lt(x-x_0)\le-\tau \\-\dfrac{(x-x_0+2\tau)^{2}}{2\tau^2}+\dfrac{2(x-x_0+2\tau)}{\tau^2}-1\qquad&-\tau\lt(x-x_0)\le\tau \\\dfrac{(x-x_0+2\tau)^{2}}{2\tau^2}-\dfrac{4(x-x_0+2\tau)}{\tau^2}+8\qquad&\tau\lt(x-x_0)\le2\tau \\0\qquad&2\tau\lt(x-x_0) \end{cases} \notag\end{equation} δ(xx0)=2τ1 02τ2(xx0+2τ)22τ2(xx0+2τ)2+τ22(xx0+2τ)12τ2(xx0+2τ)2τ24(xx0+2τ)+80(xx02τ)2τ<(xx0)ττ<(xx0)ττ<(xx0)2τ2τ<(xx0)
在这里插入图片描述)

为了可以直接求解总电磁场,虚将原有的研究边界处二次场值为零的边界条件修改为均匀半空间中电偶极子在远区的一次场值的边界条件,并通过公式推导,获得计算均匀半空间中电偶极子在远区一次场值的解析表达式。

3.2 分离一次场和二次场(邓居智等)

该种方法可以降低直接计算电磁场总场的难度,将总场分解为背景场(一次场)和感应场(二次场),背景场(一次场)利用快速汉克尔变换求取,感应场(二次场)采用数值计算求解。将总场表示为一次场和二次场的和:
{ E = E a + E b H = H a + H b \begin{cases} \mathbf{E}=\mathbf{E}^a+\mathbf{E}^b \\\mathbf{H}=\mathbf{H}^a+\mathbf{H}^b \end{cases} {E=Ea+EbH=Ha+Hb式中:分别 E 、 H \mathbf{E}、\mathbf{H} EH为总场的电场强度和磁场强度, E b \mathbf{E}^b Eb E a \mathbf{E}^a Ea分别为背景场和二次场的电场强度, H b \mathbf{H}^b Hb H a \mathbf{H}^a Ha分别为背景场和二次场的磁场强度。
经过总场分离后,背景场为均匀半空间(水平层状介质)有限长电偶源所激发的电磁场,其满足的麦克斯韦方程积分形式为:
{ ∮ H b ⋅ d l = ∬ ( σ b E b + J e ) ⋅ d S ∮ E b ⋅ d l = i μ 0 ω ∬ H b ⋅ d S \begin{cases} \oint{\mathbf{H}^b\cdot\mathrm{d}\mathbf{l}}=\iint\left(\sigma^b\mathbf{E}^b+\mathbf{J}^e\right)\cdot\mathrm{d}\mathbf{S} \\ \oint{\mathbf{E}^b\cdot\mathrm{d}\mathbf{l}}=i\mu_0\omega\iint{\mathbf{H}^b}\cdot\mathrm{d}\mathbf{S} \end{cases} {Hbdl=(σbEb+Je)dSEbdl=iμ0ωHbdS将总场所满足的麦克斯韦方程减去背景场所满足的麦克斯韦方程,即得到二次场满足麦克斯韦方程的积分形式为:
{ ∮ H a ⋅ d l = ∬ J ⋅ d S ∮ E a ⋅ d l = i μ 0 ω ∬ H a ⋅ d S \begin{cases} \oint{\mathbf{H}^a\cdot\mathrm{d}\mathbf{l}}=\iint\mathbf{J}\cdot\mathrm{d}\mathbf{S} \\ \oint{\mathbf{E}^a\cdot\mathrm{d}\mathbf{l}}=i\mu_0\omega\iint{\mathbf{H}^a}\cdot\mathrm{d}\mathbf{S} \end{cases} {Hadl=JdSEadl=iμ0ωHadS式中: J \mathbf{J} J为电流密度,它与背景电场二次电场和电导率的关系为
J = σ E a + Δ σ E b \mathbf{J}=\sigma\mathbf{E}^a+\Delta\sigma\mathbf{E}^b J=σEa+ΔσEb其中 Δ σ \Delta\sigma Δσ为剩余电导率:
Δ σ = σ − σ b \Delta\sigma=\sigma-\sigma^b Δσ=σσb在笛卡儿右手坐标系中,用交错采样剖分网格在研究区域内对剩余电阻率和二次场满足的麦克斯韦积分方程进行离散化,可获得关于地下各网格单元采样点处二次磁场的正演方程:
K H 2 = s \begin{equation} \mathbf{KH}_2=\mathbf{s} \notag\end{equation} KH2=s其中, K \mathbf{K} K为对称的大型稀疏系数矩阵, H 2 \mathbf{H}_2 H2为待求解各网格单元采样点处的二次磁场三分量组成的列向量; s \mathbf{s} s为与一次场及边界场值有关的列向量。求解线性方程组从而获得二次磁场值列向量 H 2 \mathbf{H}_2 H2
经过上述变换后,CSAMT 三维数值模拟问题即转化为背景场和二次场的求解,背景场可以通过快速汉克尔变换求取,二次场采用三维交错采样有限差分法进行数值计算,将求解得到的背景场值加上二次场值即为有限长电偶源激发下CSAMT三维电磁场分布。

边界条件

1、求解二次磁场时可以采用边界二次磁场值为零的边界条件,
2、直接求总场使用的边界上的总磁场是均匀半空间中电偶极子在远区产生的一次磁场响应。

4、控制方程及边界条件

求解的微分方程如下: ∇ 2 A + k 2 A = 0 H = ∇ × A E = i ω ( A − 1 k 2 ∇ ∇ ⋅ A ) \begin{equation} \begin{aligned} \\&\nabla^2\mathbf{A}+k^2\mathbf{A}=0 \\&\mathbf{H}=\nabla\times\mathbf{A} \\&\mathbf{E}=i\omega\left(\mathbf{A}-\dfrac{1} {k^2}\nabla\nabla\cdot\mathbf{A}\right) \end{aligned} \end{equation} 2A+k2A=0H=×AE=(Ak21∇∇A)其中 A \mathbf{A} A为磁矢势, E \mathbf{E} E为电场强度, k k k为波数
磁矢量 A \mathbf{A} A满足以下边界条件:
μ 1 A x 1 = μ 2 A x 2 ∂ A x 1 ∂ z = ∂ A x 2 ∂ z μ 1 A y 1 = μ 2 A y 2 ∂ A y 1 ∂ z = ∂ A y 2 ∂ z A z 1 = A z 2 μ 1 k 1 2 ∇ ⋅ A 1 = μ 2 k 2 2 ∇ ⋅ A 2 \begin{equation} \begin{aligned} \mu_1\mathbf{A}_{x1}&=\mu_2\mathbf{A}_{x2}&&\dfrac{\partial \mathbf{A}_{x1}}{\partial z}=\dfrac{\partial \mathbf{A}_{x2}}{\partial z} \\\mu_1\mathbf{A}_{y1}&=\mu_2\mathbf{A}_{y2}&&\dfrac{\partial \mathbf{A}_{y1}}{\partial z}=\dfrac{\partial \mathbf{A}_{y2}}{\partial z} \\\mathbf{A}_{z1}&=\mathbf{A}_{z2}&&\dfrac{\mu_1}{k_1^2}\nabla\cdot\mathbf{A}_1=\dfrac{\mu_2}{k_2^2}\nabla\cdot\mathbf{A}_2 \end{aligned} \end{equation} μ1Ax1μ1Ay1Az1=μ2Ax2=μ2Ay2=Az2zAx1=zAx2zAy1=zAy2k12μ1A1=k22μ2A2

5、磁场与磁矢量势的关系

给出Biot-Savart定律: B ( p ) = μ 0 4 π ∫ V j ( q ) × L q p L 3 q p d V \begin{equation} \mathbf{B}(p)=\dfrac{\mu_0}{4\pi}\int_V{\dfrac{\mathbf{j} (q)\times\mathbf{L}{qp}}{L^3{qp}}}dV \end{equation} B(p)=4πμ0VL3qpj(q)×LqpdV 利用方向导数(梯度)作以下变换:
L q p L 3 q p = ∇ q 1 L q p = − ∇ p 1 L q p \begin{equation} \dfrac{\mathbf{L}{qp}}{L^3{qp}}=\nabla^q\dfrac{1}{L_{qp}}=-\nabla^p\dfrac{1}{L_{qp}} \end{equation} L3qpLqp=qLqp1=pLqp1其中上标字母表示梯度的方向, 利用叉乘的交换性质,可以得到: B ( p ) = μ 0 4 π ∫ V j ( q ) × ∇ q 1 L q p d V = μ 0 4 π ∫ V ∇ p 1 L q p × j ( q ) d V \begin{equation} \mathbf{B}(p)=\dfrac{\mu_0}{4\pi}\int_V{\mathbf{j}(q)\times\nabla^q\dfrac{1}{L_{qp}}}dV=\dfrac{\mu_0}{4\pi}\int_V{\nabla^p\dfrac{1}{L_{qp}}\times\mathbf{j}(q)}dV \end{equation} B(p)=4πμ0Vj(q)×qLqp1dV=4πμ0VpLqp1×j(q)dV 再根据下列的矢量计算恒等式:
∇ × ( a b ) = ∇ a × b + a ∇ × b \begin{equation} \nabla\times\left(\mathbf{ab}\right)=\nabla \mathbf{a}\times\mathbf{b}+\mathbf{a}\nabla\times\mathbf{b} \notag\end{equation} ×(ab)=a×b+a×b
∇ p × j L q p = ∇ p 1 L q p × j + ∇ p × j L q p ∇ p 1 L q p × j = ∇ p × j L q p − ∇ p × j L q p \begin{equation} \begin{aligned} &\nabla^p\times\dfrac{\mathbf{j}}{L_{qp}}=\nabla^p\dfrac{1} {L_{qp}}\times\mathbf{j}+\dfrac{\nabla^p\times \mathbf{j}}{L_{qp}} \\&\nabla^p\dfrac{1} {L_{qp}}\times\mathbf{j}=\nabla^p\times\dfrac{\mathbf{j}}{L_{qp}}-\dfrac{\nabla^p\times \mathbf{j}}{L_{qp}} \end{aligned} \end{equation} p×Lqpj=pLqp1×j+Lqpp×jpLqp1×j=p×LqpjLqpp×j代入到 ( 4 ) (4) (4)式中,可得:,
B ( p ) = μ 0 4 π ∫ V ∇ p × j L q p − ∇ p × j L q p d V = μ 0 4 π ∫ V ∇ p × j L q p d V − μ 0 4 π ∫ V ∇ p × j L q p d V \begin{equation} \begin{aligned} \mathbf{B}(p)&=\dfrac{\mu_0} {4\pi}\int_V{\nabla^p\times\dfrac{\mathbf{j}}{L_{qp}}-\dfrac{\nabla^p\times \mathbf{j}}{L_{qp}}}dV \\&=\dfrac{\mu_0}{4\pi}\int_V{\nabla^p\times\dfrac{\mathbf{j}}{L_{qp}}}dV-\dfrac{\mu_0} {4\pi}\int_V{\dfrac{\nabla^p\times \mathbf{j}}{L_{qp}}}dV \end{aligned} \end{equation} B(p)=4πμ0Vp×LqpjLqpp×jdV=4πμ0Vp×LqpjdV4πμ0VLqpp×jdV由于矢量电流密度 j \mathbf{j} j的分布只与 q q q的分布有关,则上式第二个积分项为零,则:
B ( p ) = μ 0 4 π ∫ V ∇ p × j L q p d V = ∇ p × μ 0 4 π ∫ V j L q p d V \begin{equation} \begin{aligned} \mathbf{B}(p)&=\dfrac{\mu_0}{4\pi}\int_V{\nabla^p\times\dfrac{\mathbf{j}}{L_{qp}}}dV \\&=\nabla^p\times\dfrac{\mu_0}{4\pi}\int_V{\dfrac{\mathbf{j}}{L_{qp}}}dV \end{aligned} \end{equation} B(p)=4πμ0Vp×LqpjdV=p×4πμ0VLqpjdV B ( p ) = ∇ × A \mathbf{B}(p)=\nabla\times\mathbf{A} B(p)=×A,可得:
A ( p ) = μ 0 4 π ∫ V j ( q ) L q p d V \begin{equation} \mathbf{A}(p)=\dfrac{\mu_0} {4\pi}\int_V{\dfrac{\mathbf{j}(q)}{L_{qp}}}dV \end{equation} A(p)=4πμ0VLqpj(q)dV

6、环路电流中轴线上的矢量势A和磁场B

在电流环形分布的情况下,磁矢量势有以下形式:
A = μ 0 I 4 π ∮ L d l L q p \begin{equation} \mathbf{A}=\dfrac{\mu_0I} {4\pi}\oint_L{\dfrac{d\mathbf{l}}{L_{qp}}} \end{equation} A=4πμ0ILLqpdl
在这里插入图片描述)

电流环轴线上的磁场

在轴线上每个点的距离 L q p L_{qp} Lqp都相等,所以有: A = μ 0 I 4 π L q p ∮ L d l \begin{equation} \mathbf{A}=\dfrac{\mu_0I}{4\pi{L_{qp}} }\oint_L{d\mathbf{l}} \end{equation} A=4πLqpμ0ILdl再根据沿任意闭合回路的径向积分为零,得到矢量 A \mathbf{A} A z z z轴上的值为零。同时在 z z z轴上的磁感应强度 B \mathbf{B} B有对称水平分量,导致在 z z z轴上,只与一个垂直分量 B z B_z Bz,根据Biot-Savart定理,可知: d B z = ∣ d B ∣ a L q p = μ 0 I 4 π d l L q p 2 a L q p = μ 0 I a 4 π d l L q p 3 \begin{equation} dB_z=|d\mathbf{B}|\dfrac{a} {L_{qp}}=\dfrac{\mu_0I}{4\pi}\dfrac{dl}{L^2_{qp}}\dfrac{a}{L_{qp}}=\dfrac{\mu_0Ia}{4\pi}\dfrac{dl}{L_{qp}^3} \end{equation} dBz=dBLqpa=4πμ0ILqp2dlLqpa=4πμ0IaLqp3dl在闭合环路上进行积分,我们可以得到:
B z = ∮ L d B z d l = ∮ L μ 0 I a 4 π d l L q p 3 d l = μ 0 I a 4 π 2 π a L q p 3 = μ 0 M 2 π ( a 2 + z 2 ) 3 / 2 \begin{equation} B_z=\oint_L{dB_z}dl=\oint_L{\dfrac{\mu_0Ia}{4\pi}\dfrac{dl}{L_{qp}^3}}dl=\dfrac{\mu_0Ia}{4\pi}\dfrac{2\pi a} {L_{qp}^3}=\dfrac{\mu_0M}{2\pi\left(a^2+z^2\right)^{3/2}} \end{equation} Bz=LdBzdl=L4πμ0IaLqp3dldl=4πμ0IaLqp32πa=2π(a2+z2)3/2μ0M其中, M = I π a 2 = I S M=I\pi a^2=IS M=Iπa2=IS,为平面载流线圈的磁矩。 考虑当距离 z z z的值远大于环形电流的半径 a a a时,上式中的分母 a a a可以忽略,得到:
B z = μ 0 M 2 π z 3 , 当 z ≫ a 时 \begin{equation} B_z=\dfrac{\mu_0M}{2\pi z^3},\quad 当z\gg a时 \end{equation} Bz=2πz3μ0M,za
在这里插入图片描述)

在任意点上的电流回路的磁场

在这个环形电流中,矢量势有对称性,导致与变量 ϕ \phi ϕ无关,且每一组对称的线元电流在 p p p点产生与 d l d\mathbf{l} dl相同方向的矢势,经过矢量合成,得到的与 x − z x-z xz平面相垂直的矢势,因此矢势 A \mathbf{A} A只有 ϕ \phi ϕ分量 A ϕ A_\phi Aϕ,再利用三角形余弦定理和勾股定理计算矢径的大小,得: A ϕ = μ 0 I 4 π ∮ d l ϕ L q p = μ 0 I 2 π ∮ 0 π a cos ⁡ ϕ d ϕ ( a 2 + r 2 − 2 a r cos ⁡ ϕ + z 2 ) 1 / 2 \begin{equation} A_\phi=\dfrac{\mu_0I}{4\pi}\oint{\dfrac{dl_\phi}{L_{qp}}}=\dfrac{\mu_0I}{2\pi}\oint_0^{\pi}{\dfrac{a\cos \phi d\phi}{\left(a^2+r^2-2ar\cos\phi+z^2\right)^{1/2}}} \end{equation} Aϕ=4πμ0ILqpdlϕ=2πμ0I0π(a2+r22arcosϕ+z2)1/2acosϕdϕ其中, d l ϕ dl_\phi dlϕ d l d\mathbf{l} dl沿着 ϕ \phi ϕ方向的分量,且
d l ϕ = d l cos ⁡ ϕ = ( a d ϕ ) cos ⁡ ϕ = a cos ⁡ ϕ d ϕ L q p = ( a 2 + r 2 − 2 a r cos ⁡ ϕ + z 2 ) 1 / 2 \begin{aligned} dl_\phi=dl\cos\phi=(ad\phi)\cos\phi=a\cos\phi \\d\phi L_{qp}=\left(a^2+r^2-2ar\cos\phi+z^2\right)^{1/2} \end{aligned} dlϕ=dlcosϕ=(adϕ)cosϕ=acosϕdϕLqp=(a2+r22arcosϕ+z2)1/2
由于后续的推导无需使用这个积分的结果,这里不进行推到,直接给出结果: A ϕ = I μ 0 π k ( a r ) 1 / 2 [ ( 1 − k 2 2 ) K − E ] \begin{equation} A_\phi=\dfrac{I\mu_0}{\pi k}\left(\dfrac{a}{r}\right)^{1/2}\left[\left(1-\dfrac{k^2}{2}\right)K-E\right] \end{equation} Aϕ=πkIμ0(ra)1/2[(12k2)KE]其中,其中, K K K E E E是第一类和第二类的完全椭圆积分。

7、磁偶极子的磁场

假设从载流环的中心到观测点R的距离明显大于环的半径,即 R = ( r 2 + z 2 ) 1 / 2 ≫ a \begin{equation} R=\left(r^2+z^2\right)^{1/2}\gg a \end{equation} R=(r2+z2)1/2a则式 ( 15 ) (15) (15)可以化简为:
A ϕ = μ 0 I a 2 π ∫ 0 π cos ⁡ ϕ d ϕ ( R 2 − 2 a r cos ⁡ ϕ ) 1 / 2 = μ 0 I a 2 π R ∫ 0 π cos ⁡ ϕ d ϕ [ 1 − ( 2 a r R 2 ) cos ⁡ ϕ ] 1 / 2 =  ⁣ =  ⁣ =  ⁣ =  ⁣ =  ⁣ =  ⁣ =  ⁣ = ( 1 − x ) 1 / 2 = 1 − 1 2 x μ 0 I a 2 π R ∫ 0 π ( 1 + a r R 2 cos ⁡ ϕ ) cos ⁡ ϕ d ϕ = μ 0 I a 2 π R [ ∫ 0 π cos ⁡ ϕ d ϕ + a r R 2 ∫ 0 π cos ⁡ 2 ϕ d ϕ ] = μ 0 I a 2 π R [ 0 + a r R 2 ∫ 0 π cos ⁡ 2 ϕ + 1 2 d ϕ ] = μ 0 I a 2 π R a r R 2 ( 1 2 sin ⁡ 2 ϕ + ϕ 2 ) ∣ 0 π = μ 0 I a 2 r 4 R 3 =  ⁣ =  ⁣ =  ⁣ =  ⁣ =  ⁣ =  ⁣ = sin ⁡ θ = r R , M = I S μ 0 M 4 R 2 sin ⁡ θ \begin{equation} \begin{aligned} A_\phi&=\dfrac{\mu_0Ia}{2\pi}\int_0^{\pi}{\dfrac{\cos\phi d\phi}{\left(R^2-2ar\cos\phi\right)^{1/2}}} \\&=\dfrac{\mu_0Ia}{2\pi R}\int_0^{\pi}{\dfrac{\cos\phi d\phi}{\left[1-\left(\dfrac{2ar}{R^2}\right)\cos\phi\right]^{1/2}}} \\&\stackrel{(1-x)^{1/2}=1-\frac{1}{2}x}{{=\!=\!=\!=\!=\!=\!=\!=}}\dfrac{\mu_0Ia} {2\pi R}\int_0^{\pi}\left(1+\dfrac{ar}{R^2}\cos\phi\right)\cos\phi d\phi \\&=\dfrac{\mu_0Ia}{2\pi R}\left[\int_0^{\pi}{\cos\phi}d\phi+\dfrac{ar}{R^2}\int_0^{\pi}{\cos^2\phi}d\phi\right] \\&=\dfrac{\mu_0Ia}{2\pi R}\left[0+\dfrac{ar}{R^2}\int_0^{\pi}{\dfrac{\cos 2\phi+1}{2}}d\phi\right] \\&=\dfrac{\mu_0Ia}{2\pi R}\dfrac{ar}{R^2}\left.\left(\dfrac{\dfrac{1}{2}\sin2\phi+\phi}{2}\right)\right|^\pi_0 \\&=\dfrac{\mu_0Ia^2r}{4R^3} \\&\stackrel{\sin\theta=\dfrac{r}{R},M=IS}{=\!=\!=\!=\!=\!=\!=}\dfrac{\mu_0M}{4R^2}\sin\theta \end{aligned} \end{equation} Aϕ=2πμ0Ia0π(R22arcosϕ)1/2cosϕdϕ=2πRμ0Ia0π[1(R22ar)cosϕ]1/2cosϕdϕ========(1x)1/2=121x2πRμ0Ia0π(1+R2arcosϕ)cosϕdϕ=2πRμ0Ia[0πcosϕdϕ+R2ar0πcos2ϕdϕ]=2πRμ0Ia[0+R2ar0π2cos2ϕ+1dϕ]=2πRμ0IaR2ar 221sin2ϕ+ϕ 0π=4R3μ0Ia2r=======sinθ=Rr,M=IS4R2μ0Msinθ将矢势写成矢量的形式: A = μ 0 M × R 4 π R 3 \begin{equation} \begin{aligned} \mathbf{A}=\dfrac{\mu_0\mathbf{M}\times\mathbf{R}}{4\pi R^3} \end{aligned} \end{equation} A=4πR3μ0M×R其中, M = I S l z = M l z \mathbf{M}=IS\mathbf{l}z=M\mathbf{l}z M=ISlz=Mlz M = I S M=IS M=IS为磁矩大小, l z \mathbf{l}z lz为方向,又因为矢势只与 ϕ \phi ϕ分量有关,则
A R = A θ = 0 \begin{equation} A_R=A_\theta=0 \end{equation} AR=Aθ=0根据 B = ∇ × A \mathbf{B}=\nabla\times\mathbf{A} B=×A,再根据矢量微分算符 ∇ \nabla 在球坐标下的性质: ∇ × A = 1 r sin ⁡ θ [ ∂ ( sin ⁡ θ A θ ) ∂ θ ] e r + 1 r [ 1 sin ⁡ θ ∂ A r ∂ ϕ − ∂ ( r A ϕ ) ∂ r ] e θ + 1 r [ ∂ ( e A θ ) ∂ r − ∂ A r ∂ θ ] e ϕ \begin{equation} \nabla\times\mathbf{A}=\dfrac{1}{r\sin\theta}\left[\dfrac{\partial\left(\sin\theta A\theta\right)}{\partial \theta}\right]\mathbf{e}_r+\dfrac{1}{r}\left[\dfrac{1}{\sin\theta}\dfrac{\partial A_r}{\partial \phi}- \dfrac{\partial(rA\phi)}{\partial r}\right]\mathbf{e}_\theta+\dfrac{1}{r}\left[\dfrac{\partial(eA_\theta)}{\partial r}- \dfrac{\partial A_r}{\partial\theta}\right]\mathbf{e}_\phi \end{equation} ×A=rsinθ1[θ(sinθAθ)]er+r1[sinθ1ϕArr(rAϕ)]eθ+r1[r(eAθ)θAr]eϕ结合 ( 18 ) (18) (18)式,得:
B R = 1 R sin ⁡ θ ∂ ( sin ⁡ θ A ϕ ) ∂ θ , B θ = − 1 R ∂ ( R A ϕ ) ∂ R , B ϕ = 0 B_{R}=\frac{1}{R\sin \theta} \frac{\partial\left(\sin \theta A_{\phi}\right)}{\partial \theta}, \quad B_{\theta}=-\frac{1}{R} \frac{\partial\left(R A_{\phi}\right)}{\partial R}, \quad B_{\phi}=0 BR=Rsinθ1θ(sinθAϕ),Bθ=R1R(RAϕ),Bϕ=0进而, B R = 2 μ 0 M 4 π R 3 cos ⁡ θ , B θ = μ 0 M 4 π R 3 sin ⁡ θ , B ϕ = 0 \begin{equation} B_{R}=\frac{2 \mu_{0} M}{4 \pi R^{3}} \cos \theta, \quad B_{\theta}=\frac{\mu_{0} M}{4 \pi R^{3}} \sin \theta, \quad B_{\phi}=0 \end{equation} BR=4πR32μ0Mcosθ,Bθ=4πR3μ0Msinθ,Bϕ=0

8、非导电介质中磁偶极子的准平稳场

考虑一个磁偶极子,其力矩 M ( t ) M (t) M(t)沿 z z z轴定向,并且位于一个球形坐标系的原点,结合 ( 22 ) (22) (22)式,
在这里插入图片描述)

非导电介质中磁偶极子的准平稳场

根据法拉第电磁感应定律,有: E ϕ = − 1 2 π r ∂ Φ ∂ t \begin{equation} E_\phi=-\dfrac{1}{2\pi r}\dfrac{\partial \mathbf{\Phi}} {\partial t} \end{equation} Eϕ=2πr1tΦ Φ = ∫ S B ⋅ d S = 2 π ∫ 0 r r B z   d r \begin{equation} \Phi=\int_{S} \mathbf{B} \cdot \mathrm{d} \mathbf{S}=2 \pi \int_{0}^{r} r B_{z} \mathrm{~d} r \end{equation} Φ=SBdS=2π0rrBz dr由几何关系可知, B z ( t ) = B R cos ⁡ θ − B θ sin ⁡ θ , B z ( t ) = μ 0 M ( t ) 4 π R 3 ( 3 cos ⁡ 2 θ − 1 ) \begin{equation} \begin{aligned} B_ {z} (t)= B_ {R} \cos \theta - B_ {\theta } \sin \theta , B_ {z} (t)= \frac {\mu _ {0}M(t)}{4\pi R^ {3}} (3 \cos ^ {2} \theta -1) \end{aligned} \end{equation} Bz(t)=BRcosθBθsinθ,Bz(t)=4πR3μ0M(t)(3cos2θ1)代入到 ( 24 ) (24) (24)式中进行积分运算得:
∂ Φ ∂ t = μ 0 M ˙ ( t ) 2 R 3 r 2 & R = ( r 2 + z 2 ) 1 / 2 , M ˙ ( t ) = d M / d t E ϕ ( t ) = − μ 0 M ˙ ( t ) 4 π R 2 sin ⁡ θ B R ( t ) = 2 μ 0 M ( t ) 4 π R 3 cos ⁡ θ , B θ ( t ) = μ 0 M ( t ) 4 π R 3 sin ⁡ θ , E ϕ ( t ) = − μ 0 M ˙ ( t ) 4 π R 2 sin ⁡ θ \begin{equation} \begin{aligned} &\dfrac{\partial \mathbf{\Phi}}{\partial t} = \frac {\mu _ {0}\dot{M}(t)}{2R^ {3}} r^ {2} \&R= (r^ {2}+z^ {2})^ {1/2},\quad \dot{M}(t)=dM/dt \\&E_ {\phi } (t)=- \mu _ {0} \frac {\dot{M}(t)}{4\pi R^ {2}} \sin \theta \\&B_ {R} (t)= \frac {2\mu _ {0}M(t)}{4\pi R^ {3}} \cos \theta , \quad B_ {\theta } (t)= \frac {\mu _ {0}M(t)}{4\pi R^{3}} \sin \theta ,\quad E_ {\phi } (t)=- \mu _ {0} \frac {\dot{M}(t)}{4\pi R^ {2}} \sin \theta \end{aligned} \end{equation} tΦ=2R3μ0M˙(t)r2&R=(r2+z2)1/2,M˙(t)=dM/dtEϕ(t)=μ04πR2M˙(t)sinθBR(t)=4πR32μ0M(t)cosθ,Bθ(t)=4πR3μ0M(t)sinθ,Eϕ(t)=μ04πR2M˙(t)sinθ

9、电场和磁场的复振幅的表达式

在这里插入图片描述)

球坐标中的磁偶极子和矢量势

本节从 E ∗ = ∇ × A ∗ \mathbf{E^*}=\nabla\times\mathbf{A^*} E=×A出发,考虑电场只具有 ϕ \phi ϕ分量,偶极子为 M = R e M 0 e − i ω t l z \mathbf{M}=\mathrm{Re}M_0e^{-i\omega t}\mathbf{l}z M=ReM0etlz,在球坐标系下,结合公式(21),可得:
E ϕ ∗ = 1 R [ ∂ ∂ R ( R A θ ∗ ) − ∂ A R ∂ θ ] \begin{equation} E^*_\phi=\dfrac{1}{R}\left[\dfrac{\partial}{\partial R}(RA^*_\theta)-\dfrac{\partial A^R} {\partial\theta}\right] \end{equation} Eϕ=R1[R(RAθ)θAR]代入以下条件和(35)式,
A R ∗ = A z ∗ cos ⁡ θ , A θ ∗ = − A z ∗ sin ⁡ θ E ϕ ∗ = C R 2 ( 1 − i k R ) e i k R sin ⁡ θ E ϕ ∗ = C R 2 sin ⁡ θ , 靠近偶极子时 , R ⟶ 0 \begin{equation} \begin{aligned} &A_R^*=A_z^*\cos\theta,\quad A_\theta^*=-A_z^*\sin\theta \\&E_\phi^*=\dfrac{C}{R^2}(1-ikR)e^{ikR}\sin\theta \\&E_\phi^*=\dfrac{C}{R^2}\sin\theta,\qquad 靠近偶极子时,R\longrightarrow 0 \end{aligned} \end{equation} AR=Azcosθ,Aθ=AzsinθEϕ=R2C(1ikR)eikRsinθEϕ=R2Csinθ,靠近偶极子时,R0

10、(一次场)均匀全空间球坐标系下的亥姆霍兹方程(Helmholtz Equation)

因为空间上的对称性,考虑矢量势只具有单一的 z z z分量,在球坐标系下只与变量 R R R有关,因此可以表示为:
A = A z ( k , R ) \begin{equation} \mathbf{A}=\mathbf{A}_z(k,R) \end{equation} A=Az(k,R) 拉普拉斯算子在球坐标系下表示为:
∇ 2 = 1 R 2 ∂ ∂ R ( R 2 ∂ ∂ R ) + 1 R 2 sin ⁡ θ ∂ ∂ θ ( sin ⁡ θ ∂ ∂ θ ) + 1 R 2 sin ⁡ 2 θ ∂ 2 ∂ ϕ 2 \begin{equation} \nabla^2=\dfrac{1}{R^2}\dfrac{\partial}{\partial R}\left(R^2\dfrac{\partial }{\partial R}\right)+\dfrac{1}{R^2\sin\theta}\dfrac{\partial}{\partial\theta}\left(\sin\theta\dfrac{\partial } {\partial\theta}\right)+\dfrac{1}{R^2\sin^2\theta}\dfrac{\partial^2}{\partial\phi^2} \end{equation} 2=R21R(R2R)+R2sinθ1θ(sinθθ)+R2sin2θ1ϕ22忽略掉角项 ( θ , ϕ ) (\theta,\phi) (θ,ϕ)部分: ∇ 2 = 1 R 2 ∂ ∂ R ( R 2 ∂ ∂ R ) \begin{equation} \nabla^2=\dfrac{1}{R^2}\dfrac{\partial}{\partial R}\left(R^2\dfrac{\partial }{\partial R}\right) \end{equation} 2=R21R(R2R)代入到 ( 1 ) (1) (1)的亥姆霍兹方程中去,由于微分项减少到一个,偏微分就转变未来常微分,可以得到: 1 R 2 d d R ( R 2 d A z d R ) + k 2 A z = 0 \begin{equation} \dfrac{1}{R^2}\dfrac{d}{d R}\left(R^2\dfrac{d A_z}{d R}\right)+k^2A_z=0 \end{equation} R21dRd(R2dRdAz)+k2Az=0为了求解这个方程需要定义一个新的变量 W = A z R W=A_zR W=AzR来帮助我们求解,通过该变量和 ( 5 ) (5) (5)方程中第一项的求导性质: A z = W R d A z d R = − R − 2 W + R − 1 d W d R R 2 d A z d R = − W + R d W d R d d R ( R 2 d A z d R ) = R d 2 W d R 2 \begin{equation} \begin{aligned}A_z&=\dfrac{W}{R} \\\dfrac{dA_z}{dR}&=-R^{-2}W+R^{-1}\dfrac{dW}{dR} \\R^2\dfrac{dA_z}{dR}&=- W+R\dfrac{dW}{dR} \\\dfrac{d}{dR}\left(R^2\dfrac{dA_z}{dR}\right)&=R\dfrac{d^2W}{dR^2} \end{aligned} \end{equation} AzdRdAzR2dRdAzdRd(R2dRdAz)=RW=R2W+R1dRdW=W+RdRdW=RdR2d2W代入到 ( 32 ) (32) (32)式中去,得: 1 R d 2 W d R 2 + 1 R k 2 W = 0 d 2 W d R 2 + k 2 W = 0 \begin{equation} \begin{aligned} \dfrac{1}{R}\dfrac{d^2W} {dR^2}+\dfrac{1}{R}k^2W=0 \\\dfrac{d^2W}{dR^2}+k^2W=0 \end{aligned} \end{equation} R1dR2d2W+R1k2W=0dR2d2W+k2W=0上述 ( 34 ) (34) (34)式是普通的二阶线性其次常微分方程,它有指数形式的通解: W = { e i k R , e − i k R \begin{equation} W=\begin{cases} e^{ikR}, \\e^{-ikR}\end{cases} \end{equation} W={eikR,eikR 最终得到原亥姆霍兹方程的通解为: A z = C e i k R R + D e − i k R R \begin{equation} A_z=C\dfrac{e^{ikR}} {R}+D\dfrac{e^{-ikR}}{R} \end{equation} Az=CReikR+DReikR考虑 k k k的形式为 k = a + i b k=a+ib k=a+ib, − i k R = − i ( a + i b ) R = − i a R + b R -i k R=-i(a+i b) R=-i a R+b R ikR=i(a+ib)R=iaR+bR当波传到无穷远时,矢势为无穷大,所以舍弃掉第二项,最终得到:
A z ∗ ( k , R ) = C e i k R R \begin{equation} A_z^* (k,R)=C\dfrac{e^{ikR}}{R} \end{equation} Az(k,R)=CReikR 在靠近偶极子时,场的主要由偶极子源引起,即当 R ⟶ 0 R\longrightarrow 0 R0时, E ϕ ∗ E_\phi^* Eϕ应该为偶极子产生场的大小,考虑这个边界条件,由(26)式可以得到:
E ϕ ( t ) = − μ 0 M ˙ ( t ) 4 π R 2 sin ⁡ θ ( 26 ) E ϕ ∗ ( ω ) = i ω μ 0 M 0 4 π R 2 sin ⁡ θ E ϕ ∗ = C R 2 sin ⁡ θ = i ω μ 0 M 0 4 π R 2 sin ⁡ θ C = i ω μ 0 M 0 4 π \begin{equation} \begin{aligned} &E_ {\phi } (t)=- \mu _ {0} \frac {\dot{M}(t)}{4\pi R^ {2}} \sin \theta \qquad (26) \\&E_\phi^*(\omega)=\dfrac{i\omega\mu_0M_0}{4\pi R^2}\sin\theta \\&E_\phi^*=\dfrac{C} {R^2}\sin\theta=\dfrac{i\omega\mu_0M_0}{4\pi R^2}\sin\theta \\&C=\dfrac{i\omega\mu_0M_0}{4\pi} \end{aligned} \end{equation} Eϕ(t)=μ04πR2M˙(t)sinθ(26)Eϕ(ω)=4πR2μ0M0sinθEϕ=R2Csinθ=4πR2μ0M0sinθC=4πμ0M0因此,矢量势的复振幅为 A = i ω μ 0 M 0 4 π e i k R l z \begin{equation} \begin{aligned} \mathbf{A}^=\dfrac{i\omega\mu_0M_0}{4\pi}e^{ikR}\mathbf{l}z \end{aligned} \end{equation} A=4πμ0M0eikRlz因此,我们得到均匀全空间中电偶极子的矢量势的分量为:
A z ∗ ( k , R ) = i ω μ 0 M 0 4 π e i k R R = i ω μ 0 M 0 4 π ∫ 0 m m 2 e ( − m 2 ∣ z − h ∣ ) J 0 ( m r ) d m \begin{equation} \begin{aligned} A_z^* (k,R)=\dfrac{i\omega\mu_0M_0}{4\pi}\dfrac{e^{ikR}}{R}=\dfrac{i\omega\mu_0M_0}{4\pi}\int_0\frac{m}{m_2}e^{(-m{2} |z-h|)} J_ {0} (mr)dm \end{aligned} \end{equation} Az(k,R)=4πμ0M0ReikR=4πμ0M00m2me(m2zh)J0(mr)dm其中,后续等式运用了索末菲恒等式。 考虑(28)式,对于电场的复振幅,我们有:
E ϕ ∗ = i ω μ 0 M 0 4 π ( 1 − i k R ) e i k R sin ⁡ θ \begin{equation} \begin{aligned} E_\phi^*=\dfrac{i\omega\mu_0M_0} {4\pi}(1-ikR)e^{ikR}\sin\theta \end{aligned} \end{equation} Eϕ=4πμ0M0(1ikR)eikRsinθ

11、(二次场)亥姆霍兹方程的通解

在柱坐标系下,亥姆霍兹方程具有以下形式:
∂ 2 A z ∗ ∂ r 2 + 1 r ∂ A Z ∗ ∂ r + ∂ A z ∗ ∂ z 2 k 2 A z ∗ = 0 其中, ∂ A z ∗ ∂ ϕ = 0 \begin{equation} \begin{aligned} &\dfrac{\partial^2A_z^*}{\partial r^2}+\dfrac{1}{r}\dfrac{\partial A_Z^*}{\partial r}+\dfrac{\partial A_z^*}{\partial z^2} k^2A_z^*=0 \\&其中,\dfrac{\partial A_z^*}{\partial\phi}=0 \end{aligned} \end{equation} r22Az+r1rAZ+z2Azk2Az=0其中,ϕAz=0利用分离变量法来求解这个偏微分方程,假定:
A z ∗ = U ( r ) V ( z ) \begin{equation} A_z^*=U(r)V(z) \end{equation} Az=U(r)V(z)代入到原式中,进行分离变量后,可以得到两个常微分方程如下:
∂ 2 U ∂ r 2 + 1 r ∂ U ∂ r + m 2 U = 0 ∂ 2 V ∂ z 2 − ( m 2 − k 2 ) V = 0 \begin{equation} \begin{aligned} \dfrac{\partial^2U}{\partial r^2}+\dfrac{1}{r}\dfrac{\partial U}{\partial r}+m^2U=0 \\\dfrac{\partial^2V}{\partial z^2}-(m^2-k^2)V=0 \end{aligned} \end{equation} r22U+r1rU+m2U=0z22V(m2k2)V=0其中, m m m为分离的变量。第一个方程的解是第一类和第二类的贝塞尔函数 J 0 ( m r ) , Y 0 ( m r ) J_0(mr),Y_0(mr) J0(mr),Y0(mr),考虑到 Y 0 ( m r ) Y_0(mr) Y0(mr) z z z轴上有无穷大的极值,因此把它给舍弃掉。第二个方程式二阶线性常微分方程,使用特征根法求解得到:
V = C e − ( m 2 − k 2 ) 1 / 2 z + D e ( m 2 − k 2 ) 1 / 2 z \begin{equation} V=Ce^{-(m^2-k^2)^{1/2}z}+De^{(m^2-k^2)^{1/2}z} \end{equation} V=Ce(m2k2)1/2z+De(m2k2)1/2z考虑到电磁场的有限性,亥姆霍兹方程通解的最终形式为:
A z ∗ = i ω μ 0 M 0 4 π ∫ 0 ∞ C m e − m i z J 0 ( m r ) d m \begin{equation} A_z^*=\dfrac{i\omega\mu_0M_0}{4\pi}\int_0^\infty C_me^{-m_iz}J_0(mr)dm \end{equation} Az=4πμ0M00CmemizJ0(mr)dm

12、在均匀半空间表面上的水平电偶极子的谐波场

假设一个水平电偶极子位于如图所示的下半部分空间,在地球表面下的距离h处。
Alt

存在水平边界时的水平电偶极子

矢量势的复振幅在任意位置处服从亥姆霍兹方程:
∇ 2 A ∗ + k 2 A ∗ = 0 B ∗ = ∇ × A ∗ , E ∗ = i ω A ∗ + 1 γ μ 0 ∇ ∇ ⋅ A ∗ \begin{equation} \begin{aligned} \nabla^2\mathbf{A}^*+k&^2\mathbf{A}^*=0 \\\mathbf{B}^*=\nabla\times\mathbf{A}^*,\quad\mathbf{E}^*&=i\omega\mathbf{A}^*+\dfrac{1}{\gamma\mu_0}\nabla\nabla\cdot\mathbf{A}^* \end{aligned} \end{equation} 2A+kB=×A,E2A=0=A+γμ01∇∇A我们假设矢量势有两个分量:一个分量指向偶极矩,另一个分量垂直于界面:
A ∗ = ( A x ∗ , 0 , A z ∗ ) \begin{equation} \begin{aligned} \mathbf{A}^*=\left(A_x^*,0,A_z^*\right) \end{aligned} \end{equation} A=(Ax,0,Az)在笛卡尔坐标系中,边界条件可以写成
E 1 x ∗ = E 2 x ∗ , E 1 y ∗ = E 2 y ∗ B 1 x ∗ = B 2 x ∗ , B 1 y ∗ = B 2 y ∗ \begin{equation} \begin{aligned} E_{1x}^*=E_{2x}^*,\quad E_{1y}^*=E_{2y}^* \\B_{1x}^*=B_{2x}^*,\quad B_{1y}^*=B_{2y}^* \end{aligned} \end{equation} E1x=E2x,E1y=E2yB1x=B2x,B1y=B2y为了满足矢量势的这些条件,在表面位置上存在以下等式:

i ω A 1 x ∗ + 1 γ 1 μ 0 ∂ ∂ x ∇ ⋅ A 1 ∗ = i ω A 2 x ∗ + 1 γ 2 μ 0 ∂ ∂ x ∇ ⋅ A 2 ∗ 1 γ 1 μ 0 ∂ ∂ y ∇ ⋅ A 1 ∗ = 1 γ 2 μ 0 ∂ ∂ y ∇ ⋅ A 2 ∗ \begin{equation} \begin{aligned} i\omega A_{1x}^*+\dfrac{1}{\gamma_1\mu_0}\dfrac{\partial}{\partial x}\nabla\cdot\mathbf{A}_1^*&=i\omega A_{2x}^*+\dfrac{1}{\gamma_2\mu_0}\dfrac{\partial}{\partial x}\nabla\cdot\mathbf{A}_2^* \\\dfrac{1}{\gamma_1\mu_0}\dfrac{\partial}{\partial y}\nabla\cdot\mathbf{A}_1^*&=\dfrac{1}{\gamma_2\mu_0}\dfrac{\partial}{\partial y}\nabla\cdot\mathbf{A}_2^* \end{aligned} \end{equation} A1x+γ1μ01xA1γ1μ01yA1=A2x+γ2μ01xA2=γ2μ01yA2

B ∗ = ∇ × A ∗ = ∣ i j k ∂ ∂ x ∂ ∂ y ∂ ∂ z A x ∗ 0 A z ∗ ∣ \begin{equation} \begin{aligned} \mathbf{B}^*&=\nabla\times\mathbf{A}^* \\&=\left|\begin{matrix} \mathbf{i}&\mathbf{j}&\mathbf{k} \\\dfrac{\partial}{\partial x}&\dfrac{\partial}{\partial y}&\dfrac{\partial}{\partial z} \\A_{x}^*&0&A_{z}^* \end{matrix}\right| \end{aligned} \end{equation} B=×A= ixAxjy0kzAz

∂ A 1 z ∗ ∂ y = ∂ A 2 z ∗ ∂ y ∂ A 1 x ∗ ∂ z − ∂ A 1 z ∗ ∂ x = ∂ A 2 x ∗ ∂ z − ∂ A 2 z ∗ ∂ x \begin{equation} \begin{aligned} \dfrac{\partial A_{1z}^*}{\partial y}&=\dfrac{\partial A_{2z}^*}{\partial y} \\\dfrac{\partial A_{1x}^*}{\partial z}-\dfrac{\partial A_{1z}^*}{\partial x}&=\dfrac{\partial A_{2x}^*}{\partial z}-\dfrac{\partial A_{2z}^*}{\partial x} \end{aligned} \end{equation} yA1zzA1xxA1z=yA2z=zA2xxA2z通过化简,这些条件等价于两组非常简单的条件:
A 1 x ∗ = A 2 x ∗ , A 1 x ∗ ∂ z = A 2 x ∗ ∂ z A 1 z ∗ = A 2 z ∗ , 1 γ 1 ∇ ⋅ A 1 ∗ = 1 γ 2 ∇ ⋅ A 2 ∗ \begin{equation} \begin{aligned} A_{1x}^*=A_{2x}^*&,\quad\dfrac{A_{1x}^*}{\partial z}=\dfrac{A_{2x}^*}{\partial z} \\A_{1z}^*=A_{2z}^*&,\quad\dfrac{1}{\gamma_1}\nabla\cdot\mathbf{A}_1^*=\dfrac{1}{\gamma_2}\nabla\cdot\mathbf{A}_2^* \end{aligned} \end{equation} A1x=A2xA1z=A2z,zA1x=zA2x,γ11A1=γ21A2

12.1、 A x ∗ A_x^* Ax A z ∗ A_z^* Az的积分表示

接下来确定了向量势的垂直分量 A x ∗ A_x^* Ax的一个表达式,它也满足亥姆霍兹方程:
{ ∇ 2 A 1 x ∗ + k 1 2 A 1 x ∗ = 0 , 当 z < 0 ∇ 2 A 2 x ∗ + k 2 2 A 2 x ∗ = 0 , 当 z > 0 \begin{equation} \begin{cases} \nabla^2A_{1x}^*+k_1^2A_{1x}^*=0,\qquad当z\lt0 \\\nabla^2A_{2x}^*+k_2^2A_{2x}^*=0,\qquad当z\gt0 \end{cases} \end{equation} {2A1x+k12A1x=0,z<02A2x+k22A2x=0,z>0同时满足边界条件,
A 1 x ∗ = A 2 x ∗ , ∂ A 1 x ∗ ∂ z = A 2 x ∗ ∂ z , 当 z = 0 \begin{equation} A_{1x}^*=A_{2x}^*,\quad\dfrac{\partial A_{1x}^*}{\partial z}=\dfrac{A_{2x}^*}{\partial z},\quad 当z=0 \end{equation} A1x=A2x,zA1x=zA2x,z=0在下半部分空间中,分量 A 2 x ∗ A_{2x}^* A2x可以写成一个和如下:
A 2 x ∗ = A 2 x ( 0 ) ∗ + A 2 x ( s ) ∗ \begin{equation} \begin{aligned} A_{2x}^*=A_{2x}^{{(0)}^*}+A_{2x}^{{(s)}^*} \end{aligned} \end{equation} A2x=A2x(0)+A2x(s)其中, A 2 x ( 0 ) ∗ A_{2x}^{{(0)}^*} A2x(0)为均匀全空间中电偶极子的矢量势的分量, A 2 x ( s ) ∗ A_{2x}^{{(s)}^*} A2x(s)为表示二次场的矢量势项。利用之前的证明:
A 2 x ( 0 ) ∗ = μ 0 I d l 4 π e i k 2 R R = μ 0 I d l 4 π ∫ 0 ∞ m m 2 e ( − m 2 ∣ z − h ∣ ) J 0 ( m r ) d m \begin{equation} \begin{aligned} A_{2x}^{{(0)}^*}=\dfrac{\mu_0Idl}{4\pi}\dfrac{e^{ik_2R}}{R}=\dfrac{\mu_0Idl}{4\pi}\int_0^\infty\frac{m}{m_2}e^{(-m{2} |z-h|)} J_ {0} (mr)dm \end{aligned} \end{equation} A2x(0)=4πμ0IdlReik2R=4πμ0Idl0m2me(m2zh)J0(mr)dm这里有,
R = [ r 2 + ( z − h ) 2 ] 1 / 2 , m 2 = ( m 2 − k 2 2 ) 1 / 2 \begin{equation} \begin{aligned} R=\left[r^2+(z-h)^2\right]^{1/2},\quad m_2=\left(m^2-k_2^2\right)^{1/2} \end{aligned} \end{equation} R=[r2+(zh)2]1/2,m2=(m2k22)1/2再利用之前求解亥姆霍兹方程的结果,可知:
A 1 x ∗ = μ 0 I d l 4 π ∫ 0 ∞ C 1 e ( m 1 z J 0 ( m r ) d m A 2 x ∗ = μ 0 I d l 4 π ∫ 0 ∞ [ m m 2 e − m 2 ∣ z − h ∣ ) + D 1 e − m 2 z ] J 0 ( m r ) d m \begin{equation} \begin{aligned} &A_{1x}^{*}=\dfrac{\mu_0Idl}{4\pi}\int_0^\infty C_1e^{(m_1z}J_{0}(mr)dm \\&A_{2x}^{*}=\dfrac{\mu_0Idl}{4\pi}\int_0^\infty\left[\dfrac{m}{m_2}e^{-m_{2} |z-h|)}+D_1e^{-m_2z}\right] J_ {0}(mr)dm \end{aligned} \end{equation} A1x=4πμ0Idl0C1e(m1zJ0(mr)dmA2x=4πμ0Idl0[m2mem2zh)+D1em2z]J0(mr)dm代入边界条件,我们得到了一个确定 C 1 C_1 C1 D 1 D_1 D1的方程组:
C 1 = m m 2 e − m 2 h + D 1 m 1 C 1 = m e − m 2 h − m 2 D 1 \begin{equation} \begin{aligned} &C_1=\dfrac{m}{m_2}e^{-m_2h}+D1 \\&m_1C_1=me^{-m_2h}-m_2D_1 \end{aligned} \end{equation} C1=m2mem2h+D1m1C1=mem2hm2D1解这个二元方程组,得
C 1 = 2 m m 1 + m 2 e − m 2 h , D 1 = m m 2 m 2 − n 1 m 2 + m 1 e − m 2 h , m 1 = ( m 2 − k 1 2 ) 1 / 2 \begin{equation} \begin{aligned} C_1=\dfrac{2m}{m_1+m_2}e^{-m_2h},\quad D_1=\dfrac{m}{m_2}\dfrac{m_2-n_1}{m_2+ m_1}e^{-m_2h},\quad m_1=(m^2-k_1^2)^{1/2} \end{aligned} \end{equation} C1=m1+m22mem2h,D1=m2mm2+m1m2n1em2h,m1=(m2k12)1/2因此,我们得到了水平分量的以下表达式:
A 1 x ∗ = μ 0 I d l 4 π ∫ 0 ∞ 2 m m 1 + m 2 e − m 2 h e m 1 z J 0 ( m r ) d m A 2 x ∗ = μ 0 I d l 4 π ∫ 0 ∞ m m 2 { e − m 2 ∣ z − h ∣ + m 2 − m 1 m 2 + m 1 e − m 2 ( z + h ) } J 0 ( m r ) d m \begin{equation} \begin{aligned} &A_{1x}^{*}=\dfrac{\mu_0Idl}{4\pi}\int_0^\infty \dfrac{2m}{m_1+m_2}e^{-m_2h}e^{m_1z}J_{0}(mr)dm \\&A_{2x}^{*}=\dfrac{\mu_0Idl}{4\pi}\int_0^\infty\dfrac{m}{m_2}\left\{e^{-m_{2} |z-h|}+\dfrac{m_2-m_1}{m_2+ m_1}e^{-m_2(z+h)}\right\}J_ {0}(mr)dm \end{aligned} \end{equation} A1x=4πμ0Idl0m1+m22mem2hem1zJ0(mr)dmA2x=4πμ0Idl0m2m{em2zh+m2+m1m2m1em2(z+h)}J0(mr)dm
利用贝塞尔函数的微分性质,同理可得
A 1 z ∗ = μ 0 I d l 4 π ( ρ 1 − ρ 2 ) cos ⁡ ϕ ∫ 0 ∞ 2 m 2 e − m 2 h e m 1 z ( m 1 + m 2 ) ( ρ 1 m 1 + ρ 2 m 2 ) J 1 ( m r ) d m A 2 z ∗ = μ 0 I d l 4 π ( ρ 1 − ρ 2 ) cos ⁡ ϕ ∫ 0 ∞ 2 m 2 e − m 2 h e − m 2 z ( m 1 + m 2 ) ( ρ 1 m 1 + ρ 2 m 2 ) J 1 ( m r ) d m \begin{equation} \begin{aligned} A_{1z}^*=\dfrac{\mu_0Idl}{4\pi}(\rho_1-\rho_2)\cos\phi\int_0^\infty{\dfrac{2m^2e^{-m_2h}e^{m_1z}}{(m_1+m_2)(\rho_1m_1+\rho_2m_2)}J_1(mr)}dm \\A_{2z}^*=\dfrac{\mu_0Idl}{4\pi}(\rho_1-\rho_2)\cos\phi\int_0^\infty{\dfrac{2m^2e^{-m_2h}e^{-m_2z}}{(m_1+m_2)(\rho_1m_1+\rho_2m_2)}J_1(mr)}dm \end{aligned} \end{equation} A1z=4πμ0Idl(ρ1ρ2)cosϕ0(m1+m2)(ρ1m1+ρ2m2)2m2em2hem1zJ1(mr)dmA2z=4πμ0Idl(ρ1ρ2)cosϕ0(m1+m2)(ρ1m1+ρ2m2)2m2em2hem2zJ1(mr)dm
讨论偶极子位于地表时,上半部分空间是一个绝缘体,即 h = 0 h=0 h=0 m 1 = m , m 2 = m 1 m_1=m,m_2=m_1 m1=m,m2=m1在这个条件下,矢量势的分量为:
{ A 1 x ∗ = μ 0 I d l 4 π ∫ 0 ∞ 2 m m 1 + m 2 e m 1 z J 0 ( m r ) d m A 1 z ∗ = μ 0 I d l 4 π cos ⁡ ϕ ∫ 0 ∞ 2 m m + m 1 e m z J 1 ( m r ) d m , 当 z < 0 { A 2 x ∗ = μ 0 I d l 4 π ∫ 0 ∞ 2 m m + m 1 e − m 1 z J 0 ( m r ) d m A 2 z ∗ = μ 0 I d l 4 π cos ⁡ ϕ ∫ 0 ∞ 2 m m + m 1 e − m 1 z J 1 ( m r ) d m , 当 z > 0 \begin{equation} \begin{aligned} &\begin{cases} &A_{1x}^{*}=\dfrac{\mu_0Idl}{4\pi}\int_0^\infty \dfrac{2m}{m_1+m_2}e^{m_1z}J_{0}(mr)dm \\&A_{1z}^*=\dfrac{\mu_0Idl}{4\pi}\cos\phi\int_0^\infty\dfrac{2m}{m+m_1}e^{mz}J_ {1}(mr)dm \end{cases},当z\lt0 \\&\begin{cases} &A_{2x}^{*}=\dfrac{\mu_0Idl}{4\pi}\int_0^\infty\dfrac{2m}{m+m_1}e^{-m_1z}J_ {0}(mr)dm \\&A_{2z}^*=\dfrac{\mu_0Idl}{4\pi}\cos\phi\int_0^\infty\dfrac{2m}{m+m_1}e^{-m_1z}J_ {1}(mr)dm,当z\gt0 \end{cases} \end{aligned} \end{equation} A1x=4πμ0Idl0m1+m22mem1zJ0(mr)dmA1z=4πμ0Idlcosϕ0m+m12memzJ1(mr)dm,z<0 A2x=4πμ0Idl0m+m12mem1zJ0(mr)dmA2z=4πμ0Idlcosϕ0m+m12mem1zJ1(mr)dm,z>0

12.2、地球表面的电磁场

在这里插入图片描述在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
Alt

电偶极源电磁场的分布特点

12.3、近区

在这里插入图片描述

近区(A) (近场, 感应场微弱)靠近供电偶极,电场水平分量正比于地下电阻率,且与频率无关。近区视电阻率是接-发距r的函数。近区电场E按1/3衰减,磁场H按1/2衰减。近区测量结果与直流电阻率测深相类似

12.4、远区

在这里插入图片描述

在这里插入图片描述

远区 ©与大地电磁法一样,场是电阻率和频率的函数。
远区的卡尼亚电阻率和探测深度分别由下两式表示:

ρ = 1 5 f × ∣ E x E y ∣ , h ≈ 356 × ρ f \begin{equation} \rho=\dfrac{1}{5}f\times\left|\dfrac{E_x}{E_y}\right|,\qquad h\approx356\times\sqrt{\dfrac{\rho}{f}} \end{equation} ρ=51f× EyEx ,h356×fρ

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值