贝塞尔方程与贝塞尔函数

n阶的贝塞尔方程有如下形式:
x 2 y ′ ′ + x y ′ + ( x 2 − n 2 ) y = 0 \begin{equation} \begin{aligned} x^2y^{''}+xy^{'}+(x^2-n^2)y=0 \end{aligned} \end{equation} x2y′′+xy+(x2n2)y=0假定贝塞尔方程有如下形式的显式级数解:
y ( x ) = ∑ γ = 0 ∞ a γ x m + γ y = a 0 x m + a 1 x m + 1 + ⋯ + a γ x m + γ \begin{equation} \begin{aligned} y(x)&=\sum_{\gamma=0}^{\infty}{a_\gamma x^{m+\gamma}} \\y&=a_0x^m+a_1x^{m+1}+\cdots+a_\gamma x^{m+\gamma} \end{aligned} \end{equation} y(x)y=γ=0aγxm+γ=a0xm+a1xm+1++aγxm+γ代入到(1)式中得:
a 0 ( m 2 − n 2 ) x m + a 1 [ ( m + 1 ) 2 − n 2 ] x m + 1 + { a 2 [ ( m + 2 ) 2 − n 2 ] + a 0 } x m + 2 + ⋯ = 0 后续的形式为: { a γ [ ( m + γ ) 2 − n 2 ] + a γ − 2 } x m + γ \begin{equation} \begin{aligned} &a_0(m^2-n^2)x^m+a_1\left[(m+1)^2-n^2\right]x^{m+1}+\left\{a_2\left[(m+2)^2-n^2\right]+a_0\right\}x^{m+2}+\cdots=0 \\&后续的形式为:\left\{a_\gamma\left[(m+\gamma)^2-n^2\right]+a_{\gamma-2}\right\}x^{m+\gamma} \end{aligned} \end{equation} a0(m2n2)xm+a1[(m+1)2n2]xm+1+{a2[(m+2)2n2]+a0}xm+2+=0后续的形式为:{aγ[(m+γ)2n2]+aγ2}xm+γ该方程恒等于零,所以需要级数里的每一项的系数为零:
a 0 ( m 2 − n 2 ) = 0 , m = ± n a 1 [ ( m + 1 ) 2 − n 2 ] = 0 , a 1 = 0 a 2 = − a 0 ( m + 2 ) 2 − n 2 = − a 0 ( m + 2 + n ) ( m + 2 − n ) a 3 = 0 , a 5 = 0 , ⋯   , a 2 t = 1 = 0 , t = 1 , 2 , 3 , ⋯ a 4 = − a 2 ( m + 4 ) 2 − n 2 = − a 2 ( m + 4 − n ) ( m + 4 + n ) = − a 0 ( m + 4 − n ) ( m + 4 + n ) ( m + 2 + n ) ( m + 2 − n ) \begin{equation} \begin{aligned} &a_0(m^2-n^2)=0,\quad m=\pm n \\&a_1\left[(m+1)^2-n^2\right]=0,\quad a_1=0 \\&a_2=\dfrac{-a_0}{(m+2)^2-n^2}=\dfrac{-a_0}{(m+2+n)(m+2-n)} \\&a_3=0,a_5=0,\cdots, a_{2t=1}=0,t=1,2,3,\cdots \\&a_4=\dfrac{-a_2}{(m+4)^2-n^2}=\dfrac{-a_2}{(m+4-n)(m+4+n)}=\dfrac{-a_0}{(m+4-n)(m+4+n)(m+2+n)(m+2-n)} \end{aligned} \end{equation} a0(m2n2)=0,m=±na1[(m+1)2n2]=0,a1=0a2=(m+2)2n2a0=(m+2+n)(m+2n)a0a3=0,a5=0,,a2t=1=0,t=1,2,3,a4=(m+4)2n2a2=(m+4n)(m+4+n)a2=(m+4n)(m+4+n)(m+2+n)(m+2n)a0以为贝塞尔方程式二阶微分方程,所以它应该具有两个通解 y 1 , y 2 y_1,y_2 y1,y2,且它具有以下形式的解:
y = a 0 x m [ 1 − x 2 ( m + 2 + n ) ( m + 2 − n ) + x 4 ( m + 2 + n ) ( m + 2 − n ) ( m + 4 + n ) ( m + 4 − n ) − ⋯   ] y = A y 1 + B y 2 \begin{equation} \begin{aligned} &y=a_0x^m\left[1-\dfrac{x^2}{(m+2+n)(m+2-n)}+\dfrac{x^4}{(m+2+n)(m+2-n)(m+4+n)(m+4-n)}-\cdots\right] \\&y=Ay_1+By_2 \end{aligned} \end{equation} y=a0xm[1(m+2+n)(m+2n)x2+(m+2+n)(m+2n)(m+4+n)(m+4n)x4]y=Ay1+By2考虑 m = n m=n m=n m = − n m=-n m=n 两种情形,可得上述的两个解如下:
y 1 =  ⁣ = m = n a 0 x n [ 1 − x 2 2 ⋅ 2 ⋅ ( n + 1 ) + x 4 2 ⋅ 4 ⋅ 2 2 ( n + 1 ) ( n + 2 ) − ⋯   ] y 2 =  ⁣ = m = − n a 0 x − n [ 1 − x 2 2 ⋅ 2 ⋅ ( − n + 1 ) + x 4 2 ⋅ 4 ⋅ 2 2 ( − n + 1 ) ( − n + 2 ) − ⋯   ] \begin{equation} \begin{aligned} &y_1\stackrel{m=n}{=\!=}a_0x^n\left[1-\dfrac{x^2}{2\cdot2\cdot(n+1)}+\dfrac{x^4}{2\cdot4\cdot2^2(n+1)(n+2)}-\cdots\right] \\&y_2\stackrel{m=-n}{=\!=}a_0x^{-n}\left[1-\dfrac{x^2}{2\cdot2\cdot(-n+1)}+\dfrac{x^4}{2\cdot4\cdot2^2(-n+1)(-n+2)}-\cdots\right] \end{aligned} \end{equation} y1==m=na0xn[122(n+1)x2+2422(n+1)(n+2)x4]y2==m=na0xn[122(n+1)x2+2422(n+1)(n+2)x4]通过给定初始的系数 a 0 = 1 n ! 2 n a_0=\dfrac{1}{n!2^n} a0=n!2n1可以得到n阶的贝塞尔函数具有以下形式:
J n ( x ) = x n 2 n n ! [ 1 − x 2 2 ( 2 n + 2 ) + x 4 2 ⋅ 2 ⋅ 4 ( 2 n + 2 ) ( 2 n + 4 ) − ⋯   ] J n ( x ) = ∑ k = 0 ∞ ( − 1 ) k k ! ( k + n ) ! ( x 2 ) 2 k + n J − n ( x ) = ( − 1 ) n J n ( x ) \begin{equation} \begin{aligned} &J_n(x)=\dfrac{x^n}{2^nn!}\left[1-\dfrac{x^2}{2(2n+2)}+\dfrac{x^4}{2\cdot2\cdot4(2n+2)(2n+4)}-\cdots\right] \\&J_n(x)=\sum_{k=0}^\infty{\dfrac{(-1)^k}{k!(k+n)!}\left(\dfrac{x}{2}\right)^{2k+n}} \\&J_{-n}(x)=(-1)^nJ_n(x) \end{aligned} \end{equation} Jn(x)=2nn!xn[12(2n+2)x2+224(2n+2)(2n+4)x4]Jn(x)=k=0k!(k+n)!(1)k(2x)2k+nJn(x)=(1)nJn(x)关于 J − n ( x ) J_{-n}(x) Jn(x)的证明如下:
J − n ( x ) = ∑ k = n ∞ ( − 1 ) k k ! ( k − n ) ! ( x 2 ) 2 k − n =  ⁣ =  ⁣ = k = n + s ∑ s = 0 ∞ ( − 1 ) n + s ( n + s ) ! s ! ( x 2 ) 2 s + n = ∑ s = 0 ∞ ( − 1 ) n ( − 1 ) s ( n + s ) ! s ! ( x 2 ) 2 s + n = ( − 1 ) n J n ( x ) \begin{equation} \begin{aligned} J_{-n}(x)&=\sum_{k=n}^\infty{\dfrac{(-1)^k}{k!(k-n)!}}\left(\dfrac{x}{2}\right)^{2k-n}\\&\stackrel{k=n+s}{=\!=\!=}\sum_{s=0}^\infty{\dfrac{(-1)^{n+s}}{(n+s)!s!}}\left(\dfrac{x}{2}\right)^{2s+n} \\&=\sum_{s=0}^\infty{\dfrac{(-1)^{n}(-1)^{s}}{(n+s)!s!}}\left(\dfrac{x}{2}\right)^{2s+n} \\&=(-1)^nJ_n(x) \end{aligned} \end{equation} Jn(x)=k=nk!(kn)!(1)k(2x)2kn===k=n+ss=0(n+s)!s!(1)n+s(2x)2s+n=s=0(n+s)!s!(1)n(1)s(2x)2s+n=(1)nJn(x)

在这里插入图片描述

前三个贝塞尔函数Jn和Yn的图
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值