n阶的贝塞尔方程有如下形式:
x
2
y
′
′
+
x
y
′
+
(
x
2
−
n
2
)
y
=
0
\begin{equation} \begin{aligned} x^2y^{''}+xy^{'}+(x^2-n^2)y=0 \end{aligned} \end{equation}
x2y′′+xy′+(x2−n2)y=0假定贝塞尔方程有如下形式的显式级数解:
y
(
x
)
=
∑
γ
=
0
∞
a
γ
x
m
+
γ
y
=
a
0
x
m
+
a
1
x
m
+
1
+
⋯
+
a
γ
x
m
+
γ
\begin{equation} \begin{aligned} y(x)&=\sum_{\gamma=0}^{\infty}{a_\gamma x^{m+\gamma}} \\y&=a_0x^m+a_1x^{m+1}+\cdots+a_\gamma x^{m+\gamma} \end{aligned} \end{equation}
y(x)y=γ=0∑∞aγxm+γ=a0xm+a1xm+1+⋯+aγxm+γ代入到(1)式中得:
a
0
(
m
2
−
n
2
)
x
m
+
a
1
[
(
m
+
1
)
2
−
n
2
]
x
m
+
1
+
{
a
2
[
(
m
+
2
)
2
−
n
2
]
+
a
0
}
x
m
+
2
+
⋯
=
0
后续的形式为:
{
a
γ
[
(
m
+
γ
)
2
−
n
2
]
+
a
γ
−
2
}
x
m
+
γ
\begin{equation} \begin{aligned} &a_0(m^2-n^2)x^m+a_1\left[(m+1)^2-n^2\right]x^{m+1}+\left\{a_2\left[(m+2)^2-n^2\right]+a_0\right\}x^{m+2}+\cdots=0 \\&后续的形式为:\left\{a_\gamma\left[(m+\gamma)^2-n^2\right]+a_{\gamma-2}\right\}x^{m+\gamma} \end{aligned} \end{equation}
a0(m2−n2)xm+a1[(m+1)2−n2]xm+1+{a2[(m+2)2−n2]+a0}xm+2+⋯=0后续的形式为:{aγ[(m+γ)2−n2]+aγ−2}xm+γ该方程恒等于零,所以需要级数里的每一项的系数为零:
a
0
(
m
2
−
n
2
)
=
0
,
m
=
±
n
a
1
[
(
m
+
1
)
2
−
n
2
]
=
0
,
a
1
=
0
a
2
=
−
a
0
(
m
+
2
)
2
−
n
2
=
−
a
0
(
m
+
2
+
n
)
(
m
+
2
−
n
)
a
3
=
0
,
a
5
=
0
,
⋯
,
a
2
t
=
1
=
0
,
t
=
1
,
2
,
3
,
⋯
a
4
=
−
a
2
(
m
+
4
)
2
−
n
2
=
−
a
2
(
m
+
4
−
n
)
(
m
+
4
+
n
)
=
−
a
0
(
m
+
4
−
n
)
(
m
+
4
+
n
)
(
m
+
2
+
n
)
(
m
+
2
−
n
)
\begin{equation} \begin{aligned} &a_0(m^2-n^2)=0,\quad m=\pm n \\&a_1\left[(m+1)^2-n^2\right]=0,\quad a_1=0 \\&a_2=\dfrac{-a_0}{(m+2)^2-n^2}=\dfrac{-a_0}{(m+2+n)(m+2-n)} \\&a_3=0,a_5=0,\cdots, a_{2t=1}=0,t=1,2,3,\cdots \\&a_4=\dfrac{-a_2}{(m+4)^2-n^2}=\dfrac{-a_2}{(m+4-n)(m+4+n)}=\dfrac{-a_0}{(m+4-n)(m+4+n)(m+2+n)(m+2-n)} \end{aligned} \end{equation}
a0(m2−n2)=0,m=±na1[(m+1)2−n2]=0,a1=0a2=(m+2)2−n2−a0=(m+2+n)(m+2−n)−a0a3=0,a5=0,⋯,a2t=1=0,t=1,2,3,⋯a4=(m+4)2−n2−a2=(m+4−n)(m+4+n)−a2=(m+4−n)(m+4+n)(m+2+n)(m+2−n)−a0以为贝塞尔方程式二阶微分方程,所以它应该具有两个通解
y
1
,
y
2
y_1,y_2
y1,y2,且它具有以下形式的解:
y
=
a
0
x
m
[
1
−
x
2
(
m
+
2
+
n
)
(
m
+
2
−
n
)
+
x
4
(
m
+
2
+
n
)
(
m
+
2
−
n
)
(
m
+
4
+
n
)
(
m
+
4
−
n
)
−
⋯
]
y
=
A
y
1
+
B
y
2
\begin{equation} \begin{aligned} &y=a_0x^m\left[1-\dfrac{x^2}{(m+2+n)(m+2-n)}+\dfrac{x^4}{(m+2+n)(m+2-n)(m+4+n)(m+4-n)}-\cdots\right] \\&y=Ay_1+By_2 \end{aligned} \end{equation}
y=a0xm[1−(m+2+n)(m+2−n)x2+(m+2+n)(m+2−n)(m+4+n)(m+4−n)x4−⋯]y=Ay1+By2考虑
m
=
n
m=n
m=n 和
m
=
−
n
m=-n
m=−n 两种情形,可得上述的两个解如下:
y
1
=
=
m
=
n
a
0
x
n
[
1
−
x
2
2
⋅
2
⋅
(
n
+
1
)
+
x
4
2
⋅
4
⋅
2
2
(
n
+
1
)
(
n
+
2
)
−
⋯
]
y
2
=
=
m
=
−
n
a
0
x
−
n
[
1
−
x
2
2
⋅
2
⋅
(
−
n
+
1
)
+
x
4
2
⋅
4
⋅
2
2
(
−
n
+
1
)
(
−
n
+
2
)
−
⋯
]
\begin{equation} \begin{aligned} &y_1\stackrel{m=n}{=\!=}a_0x^n\left[1-\dfrac{x^2}{2\cdot2\cdot(n+1)}+\dfrac{x^4}{2\cdot4\cdot2^2(n+1)(n+2)}-\cdots\right] \\&y_2\stackrel{m=-n}{=\!=}a_0x^{-n}\left[1-\dfrac{x^2}{2\cdot2\cdot(-n+1)}+\dfrac{x^4}{2\cdot4\cdot2^2(-n+1)(-n+2)}-\cdots\right] \end{aligned} \end{equation}
y1==m=na0xn[1−2⋅2⋅(n+1)x2+2⋅4⋅22(n+1)(n+2)x4−⋯]y2==m=−na0x−n[1−2⋅2⋅(−n+1)x2+2⋅4⋅22(−n+1)(−n+2)x4−⋯]通过给定初始的系数
a
0
=
1
n
!
2
n
a_0=\dfrac{1}{n!2^n}
a0=n!2n1可以得到n阶的贝塞尔函数具有以下形式:
J
n
(
x
)
=
x
n
2
n
n
!
[
1
−
x
2
2
(
2
n
+
2
)
+
x
4
2
⋅
2
⋅
4
(
2
n
+
2
)
(
2
n
+
4
)
−
⋯
]
J
n
(
x
)
=
∑
k
=
0
∞
(
−
1
)
k
k
!
(
k
+
n
)
!
(
x
2
)
2
k
+
n
J
−
n
(
x
)
=
(
−
1
)
n
J
n
(
x
)
\begin{equation} \begin{aligned} &J_n(x)=\dfrac{x^n}{2^nn!}\left[1-\dfrac{x^2}{2(2n+2)}+\dfrac{x^4}{2\cdot2\cdot4(2n+2)(2n+4)}-\cdots\right] \\&J_n(x)=\sum_{k=0}^\infty{\dfrac{(-1)^k}{k!(k+n)!}\left(\dfrac{x}{2}\right)^{2k+n}} \\&J_{-n}(x)=(-1)^nJ_n(x) \end{aligned} \end{equation}
Jn(x)=2nn!xn[1−2(2n+2)x2+2⋅2⋅4(2n+2)(2n+4)x4−⋯]Jn(x)=k=0∑∞k!(k+n)!(−1)k(2x)2k+nJ−n(x)=(−1)nJn(x)关于
J
−
n
(
x
)
J_{-n}(x)
J−n(x)的证明如下:
J
−
n
(
x
)
=
∑
k
=
n
∞
(
−
1
)
k
k
!
(
k
−
n
)
!
(
x
2
)
2
k
−
n
=
=
=
k
=
n
+
s
∑
s
=
0
∞
(
−
1
)
n
+
s
(
n
+
s
)
!
s
!
(
x
2
)
2
s
+
n
=
∑
s
=
0
∞
(
−
1
)
n
(
−
1
)
s
(
n
+
s
)
!
s
!
(
x
2
)
2
s
+
n
=
(
−
1
)
n
J
n
(
x
)
\begin{equation} \begin{aligned} J_{-n}(x)&=\sum_{k=n}^\infty{\dfrac{(-1)^k}{k!(k-n)!}}\left(\dfrac{x}{2}\right)^{2k-n}\\&\stackrel{k=n+s}{=\!=\!=}\sum_{s=0}^\infty{\dfrac{(-1)^{n+s}}{(n+s)!s!}}\left(\dfrac{x}{2}\right)^{2s+n} \\&=\sum_{s=0}^\infty{\dfrac{(-1)^{n}(-1)^{s}}{(n+s)!s!}}\left(\dfrac{x}{2}\right)^{2s+n} \\&=(-1)^nJ_n(x) \end{aligned} \end{equation}
J−n(x)=k=n∑∞k!(k−n)!(−1)k(2x)2k−n===k=n+ss=0∑∞(n+s)!s!(−1)n+s(2x)2s+n=s=0∑∞(n+s)!s!(−1)n(−1)s(2x)2s+n=(−1)nJn(x)
贝塞尔方程与贝塞尔函数
最新推荐文章于 2023-07-01 18:10:50 发布