可控源音频大地电磁理论基础

可控源音频大地电磁

理论基础

1、控制方程

电磁场满足麦克斯韦方程组:
∇ × H = σ E + ∂ D ∂ t ( 安培定律 ) ∇ × E = − ∂ B ∂ t ( 法拉第定律 ) ∇ ⋅ B = 0 ( 磁通量连续定律 ) ∇ ⋅ D = q ( 库伦定律 ) \begin{equation} \begin{aligned} &\nabla \times \mathbf{H}=\sigma \mathbf{E}+\dfrac{\partial \mathbf{D}}{\partial t} &&(安培定律) \\&\nabla\times\mathbf{E}=-\dfrac{\partial \mathbf{B}}{\partial t}&&(法拉第定律) \\&\nabla \cdot \mathbf{B}=0 &&(磁通量连续定律) \\&\nabla \cdot \mathbf{D}=\mathbf{q}&&(库伦定律) \end{aligned}\end{equation} ×H=σE+tD×E=tBB=0D=q(安培定律)(法拉第定律)(磁通量连续定律)(库伦定律)
其中 E ( V / m ) \mathbf{E}(V/m) E(V/m)为电场强度, H ( A / m ) \mathbf{H}(A/m) H(A/m)为磁场强度, B ( W b / m 2 ) \mathbf{B}(Wb/m^2) B(Wb/m2)为磁感应强度, D ( C / m 2 ) \mathbf{D}(C/m^2) D(C/m2)为电位移矢量, q ( C / m 3 ) \mathbf{q}(C/m^3) q(C/m3)为电荷密度,这四个物理量是电磁场的基本量,它们通过介质电性参数 ϵ , μ \epsilon,\mu ϵ,μ进行联系,在各向同性介质中,介质电性参数为标量。本构方程如下:
D = ϵ E H = B μ J = σ E \begin{equation} \begin{aligned} \mathbf{D}=\epsilon\mathbf{E} \\\mathbf{H}=\dfrac{\mathbf{B}}{\mu} \\\mathbf{J}=\sigma\mathbf{E} \end{aligned} \end{equation} D=ϵEH=μBJ=σE其中, J \mathbf{J} J为电流密度, σ \sigma σ为介质导电率, ϵ \epsilon ϵ为介质介电常数, μ \mu μ为磁导率。
对安培定律和法拉第定律两边取旋度,并且考虑在场源外( ∇ ⋅ D = 0 \nabla\cdot\mathbf{D}=0 D=0),有:
∇ × ∇ × H = σ ∇ × E + ∂ ∂ t ∇ × D ∇ ( ∇ ⋅ H ) − ∇ 2 H = σ ( − ∂ B ∂ t ) + ∂ ∂ t ϵ ( − ∂ B ∂ t ) − ∇ 2 H = ϵ μ ∂ 2 H ∂ t 2 + σ μ ∂ H ∂ t \begin{equation} \begin{aligned} \nabla\times\nabla\times\mathbf{H}&=\sigma\nabla\times\mathbf{E}+\frac{\partial}{\partial t}\nabla\times\mathbf{D} \\\nabla(\nabla\cdot\mathbf{H})-\nabla^2\mathbf{H}&=\sigma(-\dfrac{\partial B}{\partial t})+\frac{\partial}{\partial t}\epsilon(-\dfrac{\partial B}{\partial t}) \\-\nabla^2\mathbf{H}&=\epsilon\mu\dfrac{\partial^2\mathbf{H}}{\partial t^2}+\sigma\mu\dfrac{\partial\mathbf{H}}{\partial t} \end{aligned} \end{equation} ××H(H)2H2H=σ×E+t×D=σ(tB)+tϵ(tB)=ϵμt22H+σμtH
∇ × ∇ × E = ∂ ∂ t ∇ × B ∇ ( ∇ ⋅ E ) − ∇ 2 E = ∂ ∂ t μ ( σ E + ϵ ∂ E ∂ t ) − ∇ 2 E = ϵ μ ∂ 2 E ∂ t 2 + σ μ ∂ E ∂ t \begin{equation} \begin{aligned} \nabla\times\nabla\times\mathbf{E}&=\frac{\partial}{\partial t}\nabla\times\mathbf{B} \\\nabla(\nabla\cdot\mathbf{E})-\nabla^2\mathbf{E}&=\frac{\partial}{\partial t}\mu(\sigma \mathbf{E}+\dfrac{\epsilon\partial \mathbf{E}}{\partial t}) \\-\nabla^2\mathbf{E}&=\epsilon\mu\dfrac{\partial^2\mathbf{E}}{\partial t^2}+\sigma\mu\dfrac{\partial\mathbf{E}}{\partial t} \end{aligned} \end{equation} ××E(E)2E2E=t×B=tμ(σE+tϵE)=ϵμt22E+σμtE上述分别为 H \mathbf{H} H E \mathbf{E} E满足的微分方程,称为电报方程
在CSAMT方法中,所激发的源是谐变场,即:
H = H 0 e − i ω t , E = E 0 e − i ω t \begin{equation} \mathbf{H}=\mathbf{H}_0e^{-i\omega t},\mathbf{E}=\mathbf{E}_0e^{-i\omega t} \end{equation} H=H0et,E=E0et
代入到微分方程组中,可以得到:

∇ × H = σ E − i ω ϵ E = − i ω ϵ ∗ E , ϵ ∗ = ϵ + i σ ω ∇ × E = i ω μ H ∇ ⋅ H = 0 ∇ ⋅ E = 0 \begin{equation} \begin{aligned} \nabla\times\mathbf{H}&=\sigma\mathbf{E}-i\omega\epsilon\mathbf{E}=-i\omega\epsilon^*\mathbf{E},\epsilon^*=\epsilon+i\dfrac{\sigma}{\omega} \\\nabla\times\mathbf{E}&=i\omega\mu\mathbf{H} \\\nabla\cdot\mathbf{H}&=0 \\\nabla\cdot\mathbf{E}&=0 \end{aligned} \end{equation} ×H×EHE=σEϵE=ϵE,ϵ=ϵ+iωσ=μH=0=0式中 ϵ ∗ = ϵ + i σ ω \epsilon^*=\epsilon+i\dfrac{\sigma}{\omega} ϵ=ϵ+iωσ为复介电常数
同样的在方程两端取旋度,可以得到:
∇ × ∇ × H = − i ω ϵ ∗ ∇ × E ∇ ( ∇ ⋅ H ) − ∇ 2 H = − i ω ϵ ∗ ⋅ i ω μ H − ∇ 2 H = ω 2 μ ϵ ∗ H \begin{equation} \begin{aligned} \nabla\times\nabla\times\mathbf{H}&=-i\omega\epsilon^*\nabla\times\mathbf{E} \\\nabla(\nabla\cdot\mathbf{H})-\nabla^2\mathbf{H}&=-i\omega\epsilon^*\cdot i\omega\mu\mathbf{H} \\-\nabla^2\mathbf{H}&=\omega^2\mu\epsilon^*\mathbf{H} \end{aligned} \notag\end{equation} ××H(H)2H2H=ϵ×E=ϵμH=ω2μϵH k 2 = ω 2 μ ϵ ∗ = ω 2 μ ϵ + i ω μ σ k^2=\omega^2\mu\epsilon^*=\omega^2\mu\epsilon+i\omega\mu\sigma k2=ω2μϵ=ω2μϵ+μσ k k k称为复波数,或者叫做传播系数,则可以得到:
∇ 2 H + k 2 H = 0 \begin{equation} \nabla^2\mathbf{H}+k^2\mathbf{H}=0 \end{equation} 2H+k2H=0
同理可以得到:
∇ 2 E + k 2 E = 0 \begin{equation} \nabla^2\mathbf{E}+k^2\mathbf{E}=0 \end{equation} 2E+k2E=0
上述两式被称为谐变电磁场的基本微分方程——亥姆霍兹(Helmholtz equation)齐次方程。
在求解电磁场边值问题时,使用 H , E \mathbf{H},\mathbf{E} H,E是不方便的,在这里引入一个矢量位 A \mathbf{A} A(磁矢量位),以此来减少求解过程中未知数,方便推导。
H = ∇ × A \begin{equation} \mathbf{H}=\nabla\times\mathbf{A} \end{equation} H=×A代入到 ( 6 ) (6) (6)式中,可以得到:
∇ × E = i ω μ ∇ × A ∇ × ( E − i ω μ A ) = 0 \begin{equation} \begin{aligned} &\nabla\times\mathbf{E}=i\omega\mu\nabla\times\mathbf{A} \\&\nabla\times\left(\mathbf{E}-i\omega\mu\mathbf{A}\right)=0 \end{aligned} \end{equation} ×E=μ×A×(EμA)=0根据矢量恒等式 ∇ × ( ∇ U ) = 0 \nabla\times(\nabla U)=0 ×(U)=0,可得:
E − i ω μ A = ∇ U E = i ω μ A + ∇ U \begin{equation} \begin{aligned} &\mathbf{E}-i\omega\mu\mathbf{A}=\nabla U \\&\mathbf{E}=i\omega\mu\mathbf{A}+\nabla U \end{aligned} \end{equation} EμA=UE=μA+U其中 U U U为电磁场的标量位,在直流稳恒电场中,满足 E = − ∇ U \mathbf{E}=-\nabla U E=U,再考虑 ( 6 ) (6) (6)式,得:
∇ × ∇ × A = − i ω ϵ ∗ ( i ω μ A − ∇ U ) ∇ ∇ ⋅ A − ∇ 2 A = ω 2 μ ϵ ∗ A + i ω ϵ ∗ ∇ U ∇ ( ∇ ⋅ A − i ω ϵ ∗ U ) = ∇ 2 A + k 2 A \begin{equation} \begin{aligned} \nabla\times\nabla\times\mathbf{A}&=-i\omega\epsilon^*\left(i\omega\mu\mathbf{A}-\nabla U\right) \\\nabla\nabla\cdot\mathbf{A}-\nabla^2\mathbf{A}&=\omega^2\mu\epsilon^*\mathbf{A}+i\omega\epsilon^* \nabla U \\\nabla\left(\nabla\cdot\mathbf{A}-i\omega\epsilon^* U\right)&=\nabla^2\mathbf{A}+k^2\mathbf{A} \end{aligned} \end{equation} ××A∇∇A2A(AϵU)=ϵ(μAU)=ω2μϵA+ϵU=2A+k2A令上述等式的左端等于零,可以得到以下结论:
∇ ( ∇ ⋅ A − i ω ϵ ∗ U ) = 0 U = ∇ ⋅ A i ω ϵ ∗ ∇ 2 A + k 2 A = 0 \begin{equation} \begin{aligned} \nabla\left(\nabla\cdot\mathbf{A}-i\omega\epsilon^* U\right)&=0 \\U&=\dfrac{\nabla\cdot\mathbf{A}}{i\omega\epsilon^*} \\\nabla^2\mathbf{A}+k^2\mathbf{A}&=0 \end{aligned} \end{equation} (AϵU)U2A+k2A=0=ϵA=0上式即为磁矢量位的亥姆霍兹方程,结合式 ( 11 ) (11) (11) ( 13 ) (13) (13),可以得到电场强度 E \mathbf{E} E的表达式:
E = i ω μ A + ∇ U = i ω μ A + ∇ ∇ ⋅ A i ω ϵ ∗ = i ω μ ( A + ∇ ∇ ⋅ A i ω ϵ ∗ ⋅ i ω μ ) = i ω μ ( A − ∇ ∇ ⋅ A k 2 ) \begin{equation} \begin{aligned} \mathbf{E}&=i\omega\mu\mathbf{A}+\nabla U \\&=i\omega\mu\mathbf{A}+\nabla \dfrac{\nabla\cdot\mathbf{A}}{i\omega\epsilon^*} \\&=i\omega\mu\left(\mathbf{A}+\dfrac{\nabla\nabla\cdot\mathbf{A}}{i\omega\epsilon^*\cdot i\omega\mu}\right) \\&=i\omega\mu\left(\mathbf{A}-\dfrac{\nabla\nabla\cdot\mathbf{A}}{k^2}\right) \end{aligned} \end{equation} E=μA+U=μA+ϵA=μ(A+ϵμ∇∇A)=μ(Ak2∇∇A)至此问题简化为以下微分方程的求解:
∇ 2 A + k 2 A = 0 H = ∇ × A E = i ω μ ( A − ∇ ∇ ⋅ A k 2 ) \begin{equation} \begin{aligned} &\nabla^2\mathbf{A}+k^2\mathbf{A}=0 \\&\mathbf{H}=\nabla\times\mathbf{A} \\&\mathbf{E}=i\omega\mu\left(\mathbf{A}-\dfrac{\nabla\nabla\cdot\mathbf{A}}{k^2}\right) \end{aligned} \end{equation} 2A+k2A=0H=×AE=μ(Ak2∇∇A)

2、边界条件

磁矢量 A \mathbf{A} A满足以下边界条件:
μ 1 A x 1 = μ 2 A x 2 ∂ A x 1 ∂ z = ∂ A x 2 ∂ z μ 1 A y 1 = μ 2 A y 2 ∂ A y 1 ∂ z = ∂ A y 2 ∂ z A z 1 = A z 2 μ 1 k 1 2 ∇ ⋅ A 1 = μ 2 k 2 2 ∇ ⋅ A 2 \begin{equation} \begin{aligned} \mu_1\mathbf{A}_{x1}&=\mu_2\mathbf{A}_{x2}&&\dfrac{\partial \mathbf{A}_{x1}}{\partial z}=\dfrac{\partial \mathbf{A}_{x2}}{\partial z} \\\mu_1\mathbf{A}_{y1}&=\mu_2\mathbf{A}_{y2}&&\dfrac{\partial \mathbf{A}_{y1}}{\partial z}=\dfrac{\partial \mathbf{A}_{y2}}{\partial z} \\\mathbf{A}_{z1}&=\mathbf{A}_{z2}&&\dfrac{\mu_1}{k_1^2}\nabla\cdot\mathbf{A}_1=\dfrac{\mu_2}{k_2^2}\nabla\cdot\mathbf{A}_2 \end{aligned} \end{equation} μ1Ax1μ1Ay1Az1=μ2Ax2=μ2Ay2=Az2zAx1=zAx2zAy1=zAy2k12μ1A1=k22μ2A2

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值