立体角的定义即常用公式

一、什么是立体角?

  1. 在几何学中,立体角(符号:Ω)是一个给定物体从某一特定点所覆盖的视场的大小的度量。也就是说,它是一种测量物体在观测者看来有多大的方法。从这个角度观察物体的点叫做立体角的顶点,物体在这一点上对角于它的立体角。
  2. 在国际单位制(SI)中,立体角用一种叫做 ‘球面度’ 的无量纲单位表示(符号:sr)。一个立体面对应于围绕顶点的单位球上的一个单位面积,因此一个阻挡所有来自顶点的射线的物体将覆盖等于单位球的总表面积 4 π {\displaystyle 4\pi} 4π的立体面数量。实心角也可以用角度测量单位的平方来测量,比如度、分和秒。
  3. 附近的小物体可能与远处的大物体形成相同的立体角。例如,虽然月球比太阳小得多,但它也离地球近得多。

二、立体角的定义及计算公式

物体的立体角等于物体所覆盖的以顶点为中心的单位球的切面面积,更一般地,立体角单位的实心角是物体在球面上所覆盖的面积与球面半径的平方所给出的面积之比:
Ω = A r 2 \begin{equation} \Omega=\dfrac{A}{r^2} \end{equation} Ω=r2A其中A是球面表面积,r是考虑的球面的半径。
请添加图片描述
根据上图,可知立体角的计算公式为:
d Ω = d A j r 2 d A j = A B × B C d A j = ( r sin ⁡ θ d ϕ ) × ( r d θ ) d Ω = r 2 sin ⁡ θ d θ d ϕ r 2 d Ω = sin ⁡ θ d θ d ϕ \begin{equation} \begin{aligned} d \Omega&=\frac{d A_j}{r^2} \\ d A_j&=A B \times B C \\ d A_j&=(\mathrm{r} \sin \theta \mathrm{d} \phi) \times(\mathrm{r} d \theta) \\ d \Omega&=\frac{r^2 \sin \theta d \theta d \phi}{r^2} \\ d \Omega&=\sin \theta d \theta d \phi \end{aligned}\end{equation} dΩdAjdAjdΩdΩ=r2dAj=AB×BC=(rsinθdϕ)×(rdθ)=r2r2sinθdθdϕ=sinθdθdϕ

三、几种常用的立体角

  1. 半球对球心的立体角为 2 π 2\pi 2π
    对半球有 0 ≤ θ ≤ π / 2 , 0 ≤ ϕ ≤ 2 π 0 \leq \theta \leq \pi / 2 ,\quad 0 \leq \phi \leq 2 \pi 0θπ/20ϕ2π则:
    ∫ ϕ = 0 2 π ∫ θ = 0 π / 2 d Ω ∫ ϕ = 0 2 π ∫ θ = 0 π / 2 sin ⁡ θ d θ d ϕ = 2 π \begin{equation} \begin{aligned} &\int_{\phi=0}^{2 \pi} \int_{\theta=0}^{\pi / 2} d \Omega\\ &\int_{\phi=0}^{2 \pi} \int_{\theta=0}^{\pi / 2} \sin \theta d \theta d \phi=2 \pi \end{aligned} \end{equation} ϕ=02πθ=0π/2dΩϕ=02πθ=0π/2sinθdθdϕ=2π
  2. 完整的球的对球心的立体角为 4 π 4\pi 4π
    对半球有 0 ≤ θ ≤ π , 0 ≤ ϕ ≤ 2 π 0 \leq \theta \leq \pi ,\quad 0 \leq \phi \leq 2 \pi 0θπ0ϕ2π则:
    ∫ ϕ = 0 2 π ∫ θ = 0 π d Ω ∫ ϕ = 0 2 π ∫ θ = 0 π sin ⁡ θ d θ d ϕ = 4 π \begin{equation} \begin{aligned} &\int_{\phi=0}^{2 \pi} \int_{\theta=0}^{\pi} d \Omega\\ &\int_{\phi=0}^{2 \pi} \int_{\theta=0}^{\pi } \sin \theta d \theta d \phi=4 \pi \end{aligned} \end{equation} ϕ=02πθ=0πdΩϕ=02πθ=0πsinθdθdϕ=4π
  3. 更一般地,对于顶角为 2 θ 2\theta 2θ的圆锥的立体角为一个单位球的球冠
    ∫ 0 2 π ∫ 0 θ sin ⁡ θ ′ d θ ′ d ϕ = 2 π ∫ 0 θ sin ⁡ θ ′ d θ ′ = 2 π [ − cos ⁡ θ ′ ] 0 θ = 2 π ( 1 − cos ⁡ θ ) \begin{equation}\begin{aligned} \int_0^{2 \pi} \int_0^\theta \sin \theta^{\prime} d \theta^{\prime} d \phi&=2 \pi \int_0^\theta \sin \theta^{\prime} d \theta^{\prime}\\ &=2 \pi\left[-\cos \theta^{\prime}\right]_0^\theta\\ &=2 \pi(1-\cos \theta) \end{aligned}\end{equation} 02π0θsinθdθdϕ=2π0θsinθdθ=2π[cosθ]0θ=2π(1cosθ)
  • 7
    点赞
  • 27
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值