球坐标下求解拉普拉斯方程(Laplace equation)

一、Laplace’s equation

  数学和物理学中,拉普拉斯方程是一个二阶偏微分方程,通常表示为:
∇ 2 f = 0 \begin{equation}\nabla^2f=0\end{equation} 2f=0或者 Δ f = 0 \begin{equation}\Delta f=0\end{equation} Δf=0其中, Δ = ∇ ⋅ ∇ = ∇ 2 \Delta=\nabla\cdot\nabla=\nabla^2 Δ==2表示拉普拉斯算子(Laplace operator), ∇ ⋅ \nabla\cdot 表示散度算子(divergence operator), ∇ \nabla 表示梯度算子(gradient operator), f ( x , y , z ) f(x,y,z) f(x,y,z)是一个二阶可微的实函数。如果该方程的右边项是一个给定的函数 h ( x , y , z ) h(x,y,z) h(x,y,z),则可以得到泊松方程(Possion’s equation):
∇ 2 f = h \begin{equation}\nabla^2f=h\end{equation} 2f=h  不论是拉普拉斯方程还是泊松方程,它们都是最简形式的椭圆形偏微分方程,同时拉普拉斯方程还是亥姆霍兹方程(Helmholtz equation)的一种特殊形式。

不同坐标系下的拉普拉斯方程的形式

1、在直角坐标系下:

∇ 2 f = ∂ 2 f ∂ x 2 + ∂ 2 f ∂ y 2 + ∂ 2 f ∂ z 2 = 0 \begin{equation}\nabla^2f=\frac{\partial^2f}{\partial x^2}+\frac{\partial^2f}{\partial y^2}+\frac{\partial^2f}{\partial z^2}=0\end{equation} 2f=x22f+y22f+z22f=0

2、在柱坐标系下:

∇ 2 f = 1 r ∂ ∂ r ( r ∂ f ∂ r ) + 1 r 2 ∂ 2 f ∂ ϕ 2 + ∂ 2 f ∂ z 2 = 0 \begin{equation}\nabla^2f=\frac{1}{r}\frac{\partial}{\partial r}\left(r\frac{\partial f}{\partial r}\right)+\frac{1}{r^2}\frac{\partial^2f}{\partial\phi^2}+\frac{\partial^2f}{\partial z^2}=0\end{equation} 2f=r1r(rrf)+r21ϕ22f+z22f=0

3、在球坐标系下:

  由于本文着重讨论球坐标系下的拉普拉斯方程的解,所以球坐标下的拉普拉斯方程作详细讨论:

球坐标与直角坐标的关系

求解目的:就是将 [ ∂ f ∂ x 2 , ∂ f ∂ y 2 , ∂ f ∂ z 2 ] ′ \begin{bmatrix}\dfrac{\partial f}{\partial x^2},\dfrac{\partial f}{\partial y^2},\dfrac{\partial f}{\partial z^2}\end{bmatrix}^{'} [x2f,y2f,z2f] f f f ( r , θ , ϕ ) \left(r,\theta,\phi\right) (r,θ,ϕ)的一阶和二阶偏微分的线性组合表示出来。
在球坐标 ( r , θ , ϕ ) \left( r,\theta,\phi \right) (r,θ,ϕ)中, r r r表示径向距离, θ \theta θ表示方位角, ϕ \phi ϕ表示极角。
易得:
x = r sin ⁡ θ cos ⁡ ϕ y = r sin ⁡ θ sin ⁡ ϕ z = r cos ⁡ θ \begin{equation}\begin{aligned}&x=r\sin\theta\cos\phi \\&y=r\sin\theta\sin\phi \\&z=r\cos\theta \end{aligned}\end{equation} x=rsinθcosϕy=rsinθsinϕz=rcosθ
①求出一阶偏导数 ∂ f ∂ x , ∂ f ∂ y , ∂ f ∂ z \frac{\partial f}{\partial x},\frac{\partial f}{\partial y},\frac{\partial f}{\partial z} xf,yf,zf的球坐标形式:
根据上式分别对 ( r , θ , ϕ ) \left(r,\theta,\phi\right) (r,θ,ϕ)求导,再应用链式求导法则,可得: ∂ f ∂ r = ∂ f ∂ x ∂ x ∂ r + ∂ f ∂ y ∂ y ∂ r + ∂ f ∂ z ∂ z ∂ r = ∂ f ∂ x [ sin ⁡ θ cos ⁡ ϕ ] + ∂ f ∂ y [ sin ⁡ θ sin ⁡ ϕ ] + ∂ f ∂ z [ cos ⁡ θ ] ∂ f ∂ θ = ∂ f ∂ x ∂ x ∂ θ + ∂ f ∂ y ∂ y ∂ θ + ∂ f ∂ z ∂ z ∂ θ = ∂ f ∂ x [ r cos ⁡ θ cos ⁡ ϕ ] + ∂ f ∂ y [ r cos ⁡ θ sin ⁡ ϕ ] + ∂ f ∂ z [ − r sin ⁡ θ ] ∂ f ∂ ϕ = ∂ f ∂ x ∂ x ∂ ϕ + ∂ f ∂ y ∂ y ∂ ϕ + ∂ f ∂ z ∂ z ∂ ϕ = ∂ f ∂ x [ − r sin ⁡ θ sin ⁡ ϕ ] + ∂ f ∂ y [ r sin ⁡ θ cos ⁡ ϕ ] + ∂ f ∂ z [ 0 ] \begin{equation} \begin{aligned}\frac{\partial f}{\partial r}&=\frac{\partial f}{\partial x}\frac{\partial x}{\partial r}+\frac{\partial f}{\partial y}\frac{\partial y}{\partial r}+\frac{\partial f}{\partial z}\frac{\partial z}{\partial r}\\&=\frac{\partial f}{\partial x} \left[ \sin\theta\cos\phi\right]+\frac{\partial f}{\partial y}\left[\sin\theta\sin\phi\right]+\frac{\partial f}{\partial z}\left[\cos\theta\right] \\\frac{\partial f}{\partial \theta}&=\frac{\partial f}{\partial x}\frac{\partial x}{\partial \theta}+\frac{\partial f}{\partial y}\frac{\partial y}{\partial \theta}+\frac{\partial f}{\partial z}\frac{\partial z}{\partial \theta}\\&=\frac{\partial f}{\partial x} \left[ r\cos\theta\cos\phi\right]+\frac{\partial f}{\partial y}\left[r\cos\theta\sin\phi\right]+\frac{\partial f}{\partial z}\left[-r\sin\theta\right] \\\frac{\partial f}{\partial \phi}&=\frac{\partial f}{\partial x}\frac{\partial x}{\partial \phi}+\frac{\partial f}{\partial y}\frac{\partial y}{\partial \phi}+\frac{\partial f}{\partial z}\frac{\partial z}{\partial \phi}\\&=\frac{\partial f}{\partial x} \left[ -r\sin\theta\sin\phi\right]+\frac{\partial f}{\partial y}\left[r\sin\theta\cos\phi\right]+\frac{\partial f}{\partial z}\left[0\right] \end{aligned} \end{equation} rfθfϕf=xfrx+yfry+zfrz=xf[sinθcosϕ]+yf[sinθsinϕ]+zf[cosθ]=xfθx+yfθy+zfθz=xf[rcosθcosϕ]+yf[rcosθsinϕ]+zf[rsinθ]=xfϕx+yfϕy+zfϕz=xf[rsinθsinϕ]+yf[rsinθcosϕ]+zf[0]上述方程组写成矩阵形式,可得:
[ sin ⁡ θ cos ⁡ ϕ sin ⁡ θ sin ⁡ ϕ cos ⁡ θ r cos ⁡ θ cos ⁡ ϕ r cos ⁡ θ sin ⁡ ϕ − r sin ⁡ θ − r sin ⁡ θ sin ⁡ ϕ r sin ⁡ θ cos ⁡ ϕ 0 ] ⋅ [ ∂ f ∂ x ∂ f ∂ y ∂ f ∂ z ] = [ ∂ f ∂ r ∂ f ∂ θ ∂ f ∂ ϕ ] \begin{equation}\begin{bmatrix}\sin\theta\cos\phi &\sin\theta\sin\phi &\cos\theta \\ r\cos\theta\cos\phi & r\cos\theta\sin\phi &-r\sin\theta \\-r\sin\theta\sin\phi & r\sin\theta\cos\phi & 0\end{bmatrix}\cdot\begin{bmatrix}\dfrac{\partial f}{\partial x}\\[8pt]\dfrac{\partial f}{\partial y}\\[8pt]\dfrac{\partial f}{\partial z}\end{bmatrix}=\begin{bmatrix}\dfrac{\partial f}{\partial r}\\[8pt]\dfrac{\partial f}{\partial \theta}\\[8pt]\dfrac{\partial f}{\partial \phi}\end{bmatrix}\end{equation} sinθcosϕrcosθcosϕrsinθsinϕsinθsinϕrcosθsinϕrsinθcosϕcosθrsinθ0 xfyfzf = rfθfϕf
A = [ sin ⁡ θ cos ⁡ ϕ sin ⁡ θ sin ⁡ ϕ cos ⁡ θ r cos ⁡ θ cos ⁡ ϕ r cos ⁡ θ sin ⁡ ϕ − r sin ⁡ θ − r sin ⁡ θ sin ⁡ ϕ r sin ⁡ θ cos ⁡ ϕ 0 ] A=\begin{bmatrix}\sin\theta\cos\phi &\sin\theta\sin\phi &\cos\theta \\ r\cos\theta\cos\phi & r\cos\theta\sin\phi &-r\sin\theta \\-r\sin\theta\sin\phi & r\sin\theta\cos\phi & 0\end{bmatrix} A= sinθcosϕrcosθcosϕrsinθsinϕsinθsinϕrcosθsinϕrsinθcosϕcosθrsinθ0 ,如若要得到矩阵 [ ∂ f ∂ x , ∂ f ∂ y , ∂ f ∂ z ] ′ \begin{bmatrix}\dfrac{\partial f}{\partial x},\dfrac{\partial f}{\partial y},\dfrac{\partial f}{\partial z}\end{bmatrix}^{'} [xf,yf,zf],则需要求取左式 A A A的矩阵逆 A − 1 A^{-1} A1,利用MATLAB符号求解器可得:
A − 1 = [ sin ⁡ θ cos ⁡ ϕ cos ⁡ θ cos ⁡ ϕ r − sin ⁡ ϕ r sin ⁡ θ sin ⁡ θ sin ⁡ ϕ cos ⁡ θ sin ⁡ ϕ r cos ⁡ ϕ r sin ⁡ θ cos ⁡ θ − sin ⁡ θ r 0 ] \begin{equation}A^{-1}=\begin{bmatrix}\sin\theta\cos\phi &\dfrac{\cos\theta\cos\phi}{r} &-\dfrac{\sin\phi}{r\sin\theta} \\[8pt]\sin\theta\sin\phi &\dfrac{\cos\theta\sin\phi}{r} &\dfrac{\cos\phi}{r\sin\theta} \\[8pt]\cos\theta & -\dfrac{\sin\theta}{r} &0\end{bmatrix}\end{equation} A1= sinθcosϕsinθsinϕcosθrcosθcosϕrcosθsinϕrsinθrsinθsinϕrsinθcosϕ0 至此我们得到了:
[ ∂ f ∂ x ∂ f ∂ y ∂ f ∂ z ] = A − 1 ⋅ [ ∂ f ∂ r ∂ f ∂ θ ∂ f ∂ ϕ ] \begin{equation}\begin{bmatrix}\dfrac{\partial f}{\partial x}\\[8pt]\dfrac{\partial f}{\partial y}\\[8pt]\dfrac{\partial f}{\partial z}\end{bmatrix}=A^{-1}\cdot\begin{bmatrix}\dfrac{\partial f}{\partial r}\\[8pt]\dfrac{\partial f}{\partial \theta}\\[8pt]\dfrac{\partial f}{\partial \phi}\end{bmatrix} \end{equation} xfyfzf =A1 rfθfϕf 据此,再利用复合函数求导法则,求取 f f f在直角坐标系 ( x , y , z ) \left(x,y,z\right) (x,y,z)下的各个二阶偏导数如下:
在次过程中,需要反复使用 r , sin ⁡ θ , cos ⁡ θ , sin ⁡ ϕ , cos ⁡ ϕ r,\sin\theta,\cos\theta,\sin\phi,\cos\phi r,sinθ,cosθ,sinϕ,cosϕ x , y , z x,y,z x,y,z的偏导数,使得最终结果是含有与球坐标系有关的参数 ( r , sin ⁡ θ , cos ⁡ θ , sin ⁡ ϕ , cos ⁡ ϕ ) \left(r,\sin\theta,\cos\theta,\sin\phi,\cos\phi\right) (r,sinθ,cosθ,sinϕ,cosϕ) f f f对球坐标参数 ( r , θ , ϕ ) \left(r,\theta,\phi\right) (r,θ,ϕ)的各阶偏导数的多项式,如何求取呢?
笔者利用求导法则的计算结果如下:
x 2 + y 2 + z 2 = r 2 ∂ ∂ x ( x 2 + y 2 + z 2 ) = ∂ ∂ x r 2 2 x = 2 r ∂ r ∂ x ∂ r ∂ x = x r = r sin ⁡ θ cos ⁡ ϕ r = sin ⁡ θ cos ⁡ ϕ \begin{equation}\begin{aligned}x^2+y^2+z^2 &=r^2\\\frac{\partial}{\partial x}\left(x^2+y^2+z^2\right) &=\frac{\partial}{\partial x}r^2\\[8pt]2x &=2r\frac{\partial r}{\partial x}\\\frac{\partial r}{\partial x} &=\frac{x}{r}\\ &=\frac{r\sin\theta\cos\phi}{r}\\ &=\sin\theta\cos\phi \end{aligned} \end{equation} x2+y2+z2x(x2+y2+z2)2xxr=r2=xr2=2rxr=rx=rrsinθcosϕ=sinθcosϕ同理可得:
∂ r ∂ y = y r = r sin ⁡ θ sin ⁡ ϕ r = sin ⁡ θ sin ⁡ ϕ ∂ r ∂ z = z r = r cos ⁡ ϕ r = cos ⁡ ϕ \begin{equation}\begin{aligned}\frac{\partial r}{\partial y} &=\frac{y}{r}=\frac{r\sin\theta\sin\phi}{r}=\sin\theta\sin\phi \\\frac{\partial r}{\partial z} &=\frac{z}{r}=\frac{r\cos\phi}{r}=\cos\phi \end{aligned} \end{equation} yrzr=ry=rrsinθsinϕ=sinθsinϕ=rz=rrcosϕ=cosϕ接下来求取 sin ⁡ ϕ \sin\phi sinϕ, cos ⁡ ϕ \cos\phi cosϕ的偏导数: x = r sin ⁡ θ cos ⁡ ϕ y = r sin ⁡ θ sin ⁡ ϕ y x = tan ⁡ ϕ ∂ ∂ y y x = ∂ ∂ y tan ⁡ ϕ 1 x = tan ⁡ ′ ϕ ∂ ϕ ∂ y = 1 cos ⁡ 2 ϕ ∂ ϕ ∂ y ∂ ϕ ∂ y = cos ⁡ 2 ϕ x = cos ⁡ 2 ϕ r sin ⁡ θ cos ⁡ ϕ = cos ⁡ ϕ r sin ⁡ θ \begin{equation}\begin{aligned}x &=r\sin\theta\cos\phi\\ y&=r\sin\theta\sin\phi\\\frac{y}{x} &=\tan\phi\\ \frac{\partial}{\partial y} \frac{y}{x} &=\frac{\partial}{\partial y} \tan\phi\\\frac{1}{x}&=\tan^{'}\phi\frac{\partial \phi}{\partial y}\\ &=\frac{1}{\cos^2\phi}\frac{\partial \phi}{\partial y}\\\frac{\partial \phi}{\partial y}&=\frac{\cos^2\phi}{x}\\ &=\frac{\cos^2\phi}{r\sin\theta\cos\phi}\\&=\frac{\cos\phi}{r\sin\theta} \end{aligned} \end{equation} xyxyyxyx1yϕ=rsinθcosϕ=rsinθsinϕ=tanϕ=ytanϕ=tanϕyϕ=cos2ϕ1yϕ=xcos2ϕ=rsinθcosϕcos2ϕ=rsinθcosϕ ∂ sin ⁡ ϕ ∂ y = ∂ sin ⁡ ϕ ∂ ϕ ∂ ϕ ∂ y = cos ⁡ ϕ ∂ ϕ ∂ y = cos ⁡ 2 ϕ r sin ⁡ θ ∂ cos ⁡ ϕ ∂ y = ∂ cos ⁡ ϕ ∂ ϕ ∂ ϕ ∂ y = − sin ⁡ ϕ ∂ ϕ ∂ y = − sin ⁡ ϕ cos ⁡ ϕ r sin ⁡ θ \begin{equation}\begin{aligned}\frac{\partial\sin\phi}{\partial y} &=\frac{\partial\sin\phi}{\partial \phi} \frac{\partial\phi}{\partial y} =\cos\phi\frac{\partial\phi}{\partial y}=\frac{\cos^2\phi}{r\sin\theta}\\\frac{\partial\cos\phi}{\partial y} &=\frac{\partial\cos\phi}{\partial \phi} \frac{\partial\phi}{\partial y} =-\sin\phi\frac{\partial\phi}{\partial y}=-\frac{\sin\phi\cos\phi}{r\sin\theta} \end{aligned}\end{equation} ysinϕycosϕ=ϕsinϕyϕ=cosϕyϕ=rsinθcos2ϕ=ϕcosϕyϕ=sinϕyϕ=rsinθsinϕcosϕ y x = tan ⁡ ϕ ∂ ∂ x y x = ∂ ∂ x tan ⁡ ϕ − y x 2 = tan ⁡ ′ ϕ ∂ ϕ ∂ x = 1 cos ⁡ 2 ϕ ∂ ϕ ∂ x ∂ ϕ ∂ x = − y cos ⁡ 2 ϕ x 2 = r sin ⁡ θ sin ⁡ ϕ cos ⁡ 2 ϕ r 2 sin ⁡ θ 2 cos ⁡ ϕ 2 = sin ⁡ ϕ r sin ⁡ θ \begin{equation}\begin{aligned}\frac{y}{x} &=\tan\phi\\ \frac{\partial}{\partial x} \frac{y}{x} &=\frac{\partial}{\partial x} \tan\phi\\-\frac{y}{x^2}&=\tan^{'}\phi\frac{\partial \phi}{\partial x}\\ &=\frac{1}{\cos^2\phi}\frac{\partial \phi}{\partial x}\\\frac{\partial \phi}{\partial x}&=-\frac{y\cos^2\phi}{x^2}\\ &=\frac{r\sin\theta\sin\phi\cos^2\phi}{r^2\sin\theta^2\cos\phi^2}\\&=\frac{\sin\phi}{r\sin\theta} \end{aligned} \end{equation} xyxxyx2yxϕ=tanϕ=xtanϕ=tanϕxϕ=cos2ϕ1xϕ=x2ycos2ϕ=r2sinθ2cosϕ2rsinθsinϕcos2ϕ=rsinθsinϕ ∂ sin ⁡ ϕ ∂ x = ∂ sin ⁡ ϕ ∂ ϕ ∂ ϕ ∂ x = cos ⁡ ϕ ∂ ϕ ∂ x = sin ⁡ ϕ cos ⁡ ϕ r sin ⁡ θ ∂ cos ⁡ ϕ ∂ x = ∂ cos ⁡ ϕ ∂ ϕ ∂ ϕ ∂ x = − sin ⁡ ϕ ∂ ϕ ∂ x = − sin ⁡ ϕ 2 r sin ⁡ θ \begin{equation}\begin{aligned}\frac{\partial\sin\phi}{\partial x} &=\frac{\partial\sin\phi}{\partial \phi} \frac{\partial\phi}{\partial x} =\cos\phi\frac{\partial\phi}{\partial x}=\frac{\sin\phi\cos\phi}{r\sin\theta}\\\frac{\partial\cos\phi}{\partial x} &=\frac{\partial\cos\phi}{\partial \phi} \frac{\partial\phi}{\partial x} =-\sin\phi\frac{\partial\phi}{\partial x}=-\frac{\sin\phi^2}{r\sin\theta} \end{aligned}\end{equation} xsinϕxcosϕ=ϕsinϕxϕ=cosϕxϕ=rsinθsinϕcosϕ=ϕcosϕxϕ=sinϕxϕ=rsinθsinϕ2 ∂ sin ⁡ ϕ ∂ z = 0 ∂ cos ⁡ ϕ ∂ z = 0 \begin{equation}\begin{aligned}\frac{\partial\sin\phi}{\partial z} &=0\\\frac{\partial\cos\phi}{\partial z} &=0 \end{aligned}\end{equation} zsinϕzcosϕ=0=0接下来求取 sin ⁡ θ \sin\theta sinθ, cos ⁡ θ \cos\theta cosθ的偏导数: x = r sin ⁡ θ cos ⁡ ϕ y = r sin ⁡ θ sin ⁡ ϕ z = r cos ⁡ θ x 2 = r 2 sin ⁡ 2 θ 2 cos ⁡ 2 ϕ 2 y 2 = r 2 sin ⁡ 2 θ 2 sin ⁡ 2 ϕ 2 x 2 + y 2 = r 2 sin ⁡ 2 θ x 2 + y 2 = r sin ⁡ θ x 2 + y 2 z = tan ⁡ θ ∂ ∂ z x 2 + y 2 z = ∂ ∂ z tan ⁡ θ − x 2 + y 2 z 2 = tan ⁡ ′ θ ∂ θ ∂ z = 1 cos ⁡ 2 θ ∂ θ ∂ z ∂ θ ∂ z = − r sin ⁡ θ cos ⁡ 2 θ r 2 cos ⁡ 2 θ = − sin ⁡ θ r \begin{equation}\begin{aligned}x &=r\sin\theta\cos\phi\\ y&=r\sin\theta\sin\phi \\z&=r\cos\theta \\x^2 &=r^2\sin^2\theta^2\cos^2\phi^2 \\ y^2&=r^2\sin^2\theta^2\sin^2\phi^2 \\x^2+y^2 &=r^2\sin^2\theta \\\sqrt{x^2+y^2} &=r\sin\theta \\\frac{\sqrt{x^2+y^2} }{z}&=\tan\theta \\ \frac{\partial}{\partial z} \frac{\sqrt{x^2+y^2} }{z}&=\frac{\partial}{\partial z} \tan\theta \\-\frac{\sqrt{x^2+y^2}}{z^2}&=\tan^{'}\theta\frac{\partial \theta}{\partial z} \\ &=\frac{1}{\cos^2\theta}\frac{\partial \theta}{\partial z} \\\frac{\partial \theta}{\partial z}&=-\frac{r\sin\theta\cos^{2}\theta}{r^2\cos^{2}\theta} \\ &=-\frac{\sin\theta}{r} \end{aligned} \end{equation} xyzx2y2x2+y2x2+y2 zx2+y2 zzx2+y2 z2x2+y2 zθ=rsinθcosϕ=rsinθsinϕ=rcosθ=r2sin2θ2cos2ϕ2=r2sin2θ2sin2ϕ2=r2sin2θ=rsinθ=tanθ=ztanθ=tanθzθ=cos2θ1zθ=r2cos2θrsinθcos2θ=rsinθ ∂ sin ⁡ θ ∂ z = ∂ sin ⁡ θ ∂ θ ∂ θ ∂ z = cos ⁡ θ ∂ θ ∂ z = − sin ⁡ θ cos ⁡ θ r ∂ cos ⁡ θ ∂ z = ∂ cos ⁡ θ ∂ θ ∂ θ ∂ z = − sin ⁡ θ ∂ θ ∂ z = − sin ⁡ θ 2 r \begin{equation}\begin{aligned}\frac{\partial\sin\theta}{\partial z} &=\frac{\partial\sin\theta}{\partial \theta} \frac{\partial\theta}{\partial z} =\cos\theta\frac{\partial\theta}{\partial z}=-\frac{\sin\theta\cos\theta}{r} \\\frac{\partial\cos\theta}{\partial z} &=\frac{\partial\cos\theta}{\partial \theta} \frac{\partial\theta}{\partial z} =-\sin\theta\frac{\partial\theta}{\partial z}=-\frac{\sin\theta^2}{r} \end{aligned}\end{equation} zsinθzcosθ=θsinθzθ=cosθzθ=rsinθcosθ=θcosθzθ=sinθzθ=rsinθ2同理,在这里不作赘述,可得:
∂ sin ⁡ θ ∂ x = cos ⁡ 2 θ cos ⁡ ϕ r ∂ cos ⁡ θ ∂ x = − sin ⁡ θ cos ⁡ θ cos ⁡ ϕ r \begin{equation}\begin{aligned}\frac{\partial\sin\theta}{\partial x} &=\frac{\cos^2\theta\cos\phi}{r} \\\frac{\partial\cos\theta}{\partial x} &=-\frac{\sin\theta\cos\theta\cos\phi}{r} \end{aligned}\end{equation} xsinθxcosθ=rcos2θcosϕ=rsinθcosθcosϕ ∂ sin ⁡ θ ∂ y = cos ⁡ 2 θ sin ⁡ ϕ r ∂ cos ⁡ θ ∂ y = − sin ⁡ θ cos ⁡ θ sin ⁡ ϕ r \begin{equation}\begin{aligned}\frac{\partial\sin\theta}{\partial y} &=\frac{\cos^2\theta\sin\phi}{r} \\\frac{\partial\cos\theta}{\partial y} &=-\frac{\sin\theta\cos\theta\sin\phi}{r} \end{aligned}\end{equation} ysinθycosθ=rcos2θsinϕ=rsinθcosθsinϕ ∂ ( ∂ f / ∂ x ) / ∂ x = ( sin ⁡ θ ) 2 ( cos ⁡ ϕ ) 2 ∂ ∂ f / ∂ r / ∂ r + r − 1 sin ⁡ θ cos ⁡ θ ( cos ⁡ ϕ ) 2 ∂ ∂ f / ∂ r / ∂ θ + ∂ f / ∂ r r − 1 ( cos ⁡ θ ) 2 ( cos ⁡ ϕ ) 2 + ∂ f / ∂ r r − 1 ( sin ⁡ ϕ ) 2 − r − 1 sin ⁡ ϕ cos ⁡ ϕ ∂ ∂ f / ∂ r / ∂ ϕ + r − 1 sin ⁡ θ cos ⁡ θ ( cos ⁡ ϕ ) 2 ∂ ∂ f / ∂ θ / ∂ r + r − 2 ( cos ⁡ θ ) 2 ( cos ⁡ ϕ ) 2 ∂ ∂ f / ∂ θ / ∂ θ + ∂ f / ∂ θ r − 2 ( sin ⁡ θ ) − 1 cos ⁡ θ ( sin ⁡ ϕ ) 2 − r − 2 ( sin ⁡ θ ) − 1 cos ⁡ θ sin ⁡ ϕ cos ⁡ ϕ ∂ ∂ f / ∂ θ / ∂ ϕ − ∂ f / ∂ θ r − 2 sin ⁡ θ cos ⁡ θ ( cos ⁡ ϕ ) 2 − ∂ f / ∂ θ r − 2 sin ⁡ θ cos ⁡ θ ( cos ⁡ ϕ ) 2 + r − 2 ( sin ⁡ θ ) − 2 ( sin ⁡ ϕ ) 2 ∂ ∂ f / ∂ ϕ / ∂ ϕ + ∂ f / ∂ ϕ r − 2 ( sin ⁡ θ ) − 2 ( cos ⁡ θ ) 2 sin ⁡ ϕ cos ⁡ ϕ + ∂ f / ∂ ϕ r − 2 ( sin ⁡ θ ) − 2 sin ⁡ ϕ cos ⁡ ϕ + ∂ f / ∂ ϕ r − 2 sin ⁡ ϕ cos ⁡ ϕ − r − 1 sin ⁡ ϕ cos ⁡ ϕ ∂ ∂ f / ∂ ϕ / ∂ r − r − 2 ( sin ⁡ θ ) − 1 cos ⁡ θ sin ⁡ ϕ cos ⁡ ϕ ∂ ∂ f / ∂ ϕ / ∂ θ \begin{equation}\begin{aligned}∂( ∂f/∂x )/∂x&=(\sinθ)^2 (\cosϕ)^2 ∂∂f/∂r/∂r \\&+r^{-1} \sinθ \cosθ (\cosϕ)^2 ∂∂f/∂r/∂θ \\&+∂f/∂r r^{-1} (\cosθ)^2 (\cosϕ)^2 \\&+∂f/∂r r^{-1} (\sinϕ)^2 \\&-r^{-1} \sinϕ \cosϕ ∂∂f/∂r/∂ϕ \\&+r^{-1} \sinθ \cosθ (\cosϕ)^2 ∂∂f/∂θ/∂r \\&+r^{-2} (\cosθ)^2 (\cosϕ)^2 ∂∂f/∂θ/∂θ \\&+∂f/∂θ r^{-2} (\sinθ)^{-1} \cosθ (\sinϕ)^2 \\&-r^{-2} (\sinθ)^{-1} \cosθ \sinϕ \cosϕ ∂∂f/∂θ/∂ϕ \\&-∂f/∂θ r^{-2} \sinθ \cosθ (\cosϕ)^2 \\&-∂f/∂θ r^{-2} \sinθ \cosθ (\cosϕ)^2 \\&+r^{-2} (\sinθ)^{-2} (\sinϕ)^2 ∂∂f/∂ϕ/∂ϕ \\&+∂f/∂ϕ r^{-2} (\sinθ)^{-2} (\cosθ)^2 \sinϕ \cosϕ \\&+∂f/∂ϕ r^{-2} (\sinθ)^{-2} \sinϕ\cosϕ \\&+∂f/∂ϕ r^{-2} \sinϕ \cosϕ \\&-r^{-1} \sinϕ \cosϕ ∂∂f/∂ϕ/∂r \\&-r^{-2 }(\sinθ)^{-1} \cosθ \sinϕ \cosϕ ∂∂f/∂ϕ/∂θ\end{aligned}\end{equation} (f/x)/x=(sinθ)2(cosϕ)2∂∂f/r/r+r1sinθcosθ(cosϕ)2∂∂f/r/θ+f/rr1(cosθ)2(cosϕ)2+f/rr1(sinϕ)2r1sinϕcosϕ∂∂f/r/ϕ+r1sinθcosθ(cosϕ)2∂∂f/θ/r+r2(cosθ)2(cosϕ)2∂∂f/θ/θ+f/θr2(sinθ)1cosθ(sinϕ)2r2(sinθ)1cosθsinϕcosϕ∂∂f/θ/ϕf/θr2sinθcosθ(cosϕ)2f/θr2sinθcosθ(cosϕ)2+r2(sinθ)2(sinϕ)2∂∂f/ϕ/ϕ+f/ϕr2(sinθ)2(cosθ)2sinϕcosϕ+f/ϕr2(sinθ)2sinϕcosϕ+f/ϕr2sinϕcosϕr1sinϕcosϕ∂∂f/ϕ/rr2(sinθ)1cosθsinϕcosϕ∂∂f/ϕ/θ同理可以得到其他的二阶偏导数,这里不作展示,会在本文结尾附上。
得到的最终结果如下:
∂ 2 f ∂ x 2 + ∂ 2 f ∂ x 2 + ∂ 2 f ∂ x 2 = ∂ 2 f ∂ r 2 + 1 r 2 ∂ 2 f ∂ θ 2 + 1 r 2 sin ⁡ 2 θ ∂ 2 f ∂ ϕ 2 + 2 r ∂ f ∂ r + cos ⁡ θ r 2 sin ⁡ θ ∂ f ∂ θ = 0 \begin{equation}\begin{aligned}&\frac{\partial ^2f}{\partial x^2}+\frac{\partial ^2f}{\partial x^2}+\frac{\partial ^2f}{\partial x^2}\\=&\frac{\partial ^2f}{\partial r^2} +\frac{1}{r^2}\frac{\partial ^2f}{\partial \theta^2} +\frac{1}{r^2\sin^2\theta}\frac{\partial ^2f}{\partial \phi^2} +\frac{2}{r}\frac{\partial f}{\partial r} +\frac{\cos\theta}{r^2\sin\theta}\frac{\partial f}{\partial \theta}=0 \end{aligned}\end{equation} =x22f+x22f+x22fr22f+r21θ22f+r2sin2θ1ϕ22f+r2rf+r2sinθcosθθf=0先将上式两边同时乘以 r 2 r^2 r2,再将上式的第1、4项,第2、5项进行合并将得到我们一般常见的拉普拉斯方程在球坐标下的形式如下:
∇ 2 f = ∂ ∂ r ( r 2 ∂ f ∂ r ) + 1 sin ⁡ θ ∂ ∂ θ ( sin ⁡ θ ∂ f ∂ θ ) + 1 sin ⁡ 2 θ ∂ 2 f ∂ ϕ 2 = 0 \begin{equation}\nabla^2f=\frac{\partial}{\partial r}\left(r^2\frac{\partial f}{\partial r}\right)+\frac{1}{\sin\theta}\frac{\partial}{\partial \theta}\left(\sin\theta\frac{\partial f}{\partial\theta}\right)+\frac{1}{\sin^2\theta}\frac{\partial^2f}{\partial \phi^2}=0 \end{equation} 2f=r(r2rf)+sinθ1θ(sinθθf)+sin2θ1ϕ22f=0至此我们完成了拉普拉斯算子球坐标形式的转化工作。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值