三角形的内切圆和外接圆半径公式

设三角形三边为 a、b、c

半周长 p=(a+b+c)/2

三角形面积 S=√[p(p-a)(p-b)(p-c)] ……(海伦公式

 内切圆半径 r = S/p=√[(p-a)(p-b)(p-c)/p]= ½√[(-a+b+c)(a-b+c)(a+b-c)/(a+b+c)]

外接圆半径 R= abc/(4S)= ¼ abc/√[p(p-a)(p-b)(p-c)]= abc/√[(a+b+c)(-a+b+c)(a-b+c)(a+b-c)]

R、r、S 关系rR = S/p * abc/(4S) = abc/[2(a+b+c)]

<think>嗯,用户现在想要了解三角形内切圆外接圆半径以及圆心的计算公式。我需要先回忆相关的几何知识,然后整理出正确的公式,可能还需要用Python代码来演示如何计算这些值。首先,内切圆(incircle)是三角形内部的圆,与三边都相切,圆心称为内心。外接圆(circumcircle)是经过三角形三个顶点的圆,圆心称为外心。 对于内切圆半径,我记得公式是面积除以半周长,即r = A / s,其中s是半周长,A是三角形的面积。面积可以用海伦公式计算,半周长s=(a+b+c)/2。而内心的坐标可以通过三个顶点的坐标各边长度来计算,可能需要使用到各边的权重。 外接圆半径公式应该是R = (a*b*c)/(4*A),同样需要面积A各边长度。外心的坐标可能需要通过垂直平分线的方法来求解,或者使用坐标公式,比如利用坐标系的点来计算。 接下来,我需要确保这些公式的正确性,可能需要查阅资料确认。比如,内心的坐标应该是三个边长的加权平均,即 ( (a*xA + b*xB + c*xC)/(a+b+c), 同样处理y坐标 )。而外心的坐标可能需要解两边的垂直平分线的交点方程,或者用行列式的方法。 然后,编写Python代码时,需要先输入三个顶点的坐标,计算各边长,接着计算面积、半周长,然后得到内切圆外接圆半径。内心的坐标可能需要用到各顶点坐标各边长度,外心的坐标可能需要用坐标公式。 需要注意的是,处理垂直平分线时,可能存在特殊情况,比如三点共线,但用户的问题假设是三角形,所以可以假设三点不共线。另外,处理坐标计算时,可能会涉及线性方程组的解,可以用克拉默法则或者矩阵求解。 在代码中,可以定义一个函数来计算距离,然后计算各边长度a、b、c。接着用海伦公式算面积,进而得到内切圆半径外接圆半径则是用公式R = (a*b*c)/(4*A)。内心的坐标计算需要各顶点坐标乘以对边长度之,再除以周长。外心的坐标可能需要解两个垂直平分线的方程,或者用行列式的方式。 例如,假设顶点是A(x1,y1), B(x2,y2), C(x3,y3),边a对应BC,边b对应AC,边c对应AB。半周长s=(a+b+c)/2。内心坐标是( (a*x1 + b*x2 + c*x3)/(a+b+c), (a*y1 + b*y2 + c*y3)/(a+b+c) )。外心的坐标可以用垂直平分线的交点,比如AB的中垂线AC的中垂线的交点。中垂线的方程可以通过中点斜率来求,然后解联立方程。 不过,解联立方程可能比较麻烦,是否有更直接的公式呢?是的,外心的坐标可以用以下公式计算: d = 2*(x1*(y2 - y3) + x2*(y3 - y1) + x3*(y1 - y2)) ux = ( (x1² + y1²)*(y2 - y3) + (x2² + y2²)*(y3 - y1) + (x3² + y3²)*(y1 - y2) ) / d uy = ( (x1² + y1²)*(x3 - x2) + (x2² + y2²)*(x1 - x3) + (x3² + y3²)*(x2 - x1) ) / d 这样就能得到外心的坐标(ux, uy)。 所以,代码的步骤应该是这样的: 1. 输入三个顶点坐标,假设为元组形式,比如A(x1, y1), B(x2, y2), C(x3, y3)。 2. 计算各边的长度a、b、c。 3. 计算半周长s面积A。 4. 计算内切圆半径r = A/s,内心坐标incenter。 5. 计算外接圆半径R = (a*b*c)/(4*A),外心坐标circumcenter。 6. 输出这些值。 在编写代码时,需要注意浮点数运算,以及可能的除零错误,但用户输入的三角形应该是有效的,所以可能不需要处理这些异常。 测试一下,例如,取一个等边三角形,边长为2,各顶点坐标可能为(0,0), (2,0), (1,√3)。此时,半周长s=(2+2+2)/2=3,面积A=√3。内切圆半径r=√3 /3,外接圆半径R=(2*2*2)/(4*√3)=2/(√3)。内心外心的坐标应该相同,都是重心(1, √3/3)。 另一个测试用例,比如直角三角形,顶点在(0,0), (3,0), (0,4)。边长为3,4,5。面积A=6,半周长s=(3+4+5)/2=6。内切圆半径r=6/6=1,内心坐标应该是( (3*0 +4*3 +5*0)/(12), (3*0 +4*0 +5*4)/12 ) = (12/12, 20/12) = (1, 5/3)。外接圆半径R=(3*4*5)/(4*6)=60/24=2.5,外心坐标应该在斜边中点(1.5, 2),这里需要验证。 所以代码的正确性可以通过这些测试用例来确认。 现在,整理这些步骤,写成Python函数,接受三个顶点坐标,返回内切圆外接圆半径及圆心坐标。</think><< **三角形内切圆外接圆的计算公式及Python实现** ### **1. 内切圆(Incircle)** **半径公式**: r = A / s 其中: - A 为三角形面积(可用海伦公式计算) - s = (a + b + c) / 2 为半周长 **圆心(内心)坐标**: 若三角形顶点为 A(x₁, y₁), B(x₂, y₂), C(x₃, y₃),对应边长 a(BC 边)、b(AC 边)、c(AB 边),则内心坐标为: I_x = (a·x₁ + b·x₂ + c·x₃) / (a + b + c) I_y = (a·y₁ + b·y₂ + c·y₃) / (a + b + c) ### **2. 外接圆(Circumcircle)** **半径公式**: R = (a·b·c) / (4·A) **圆心(外心)坐标**: 外心为三角形三边垂直平分线的交点,计算公式为: d = 2·[x₁(y₂ - y₃) + x₂(y₃ - y₁) + x₃(y₁ - y₂)] C_x = [(x₁² + y₁²)(y₂ - y₃) + (x₂² + y₂²)(y₃ - y₁) + (x₃² + y₃²)(y₁ - y₂)] / d C_y = [(x₁² + y₁²)(x₃ - x₂) + (x₂² + y₂²)(x₁ - x₃) + (x₃² + y₃²)(x₂ - x₁)] / d --- **Python代码实现**: ```python import math def triangle_circles(A, B, C): # 计算边长 def distance(p1, p2): return math.hypot(p1[0]-p2[0], p1[1]-p2[1]) a = distance(B, C) # BC边长度 b = distance(A, C) # AC边长度 c = distance(A, B) # AB边长度 # 计算半周长面积(海伦公式) s = (a + b + c) / 2 area = math.sqrt(s * (s - a) * (s - b) * (s - c)) # 内切圆半径圆心 r = area / s I_x = (a*A[0] + b*B[0] + c*C[0]) / (a + b + c) I_y = (a*A[1] + b*B[1] + c*C[1]) / (a + b + c) # 外接圆半径圆心 R = (a * b * c) / (4 * area) if area != 0 else 0 # 外心坐标计算 x1, y1 = A x2, y2 = B x3, y3 = C d = 2 * (x1*(y2 - y3) + x2*(y3 - y1) + x3*(y1 - y2)) C_x = ((x1**2 + y1**2)*(y2 - y3) + (x2**2 + y2**2)*(y3 - y1) + (x3**2 + y3**2)*(y1 - y2)) / d C_y = ((x1**2 + y1**2)*(x3 - x2) + (x2**2 + y2**2)*(x1 - x3) + (x3**2 + y3**2)*(x2 - x1)) / d return { "Inradius": r, "Incenter": (I_x, I_y), "Circumradius": R, "Circumcenter": (C_x, C_y) } # 示例:顶点为 (0,0), (3,0), (0,4) 的直角三角形 A = (0, 0) B = (3, 0) C = (0, 4) result = triangle_circles(A, B, C) print("内切圆半径:", result["Inradius"]) # 输出 1.0 print("内心坐标:", result["Incenter"]) # 输出 (1.0, 1.0) print("外接圆半径:", result["Circumradius"]) # 输出 2.5 print("外心坐标:", result["Circumcenter"]) # 输出 (1.5, 2.0) ``` --- **公式解释**: 1. **内切圆半径**:面积与半周长的比值,体现三角形内部与三边相切的圆的尺寸。 2. **内心**:是三角形角平分线的交点,坐标公式通过边长加权平均实现。 3. **外接圆半径**:与三角形三边乘积面积相关,反映外接圆的大小。 4. **外心**:通过垂直平分线的交点公式计算,确保圆心到三个顶点的距离相等。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值