探索DALL·E 3:AI绘画的新突破

一、引言

在人工智能飞速发展的当下,AI 绘画领域可谓是热闹非凡。就在不久前,OpenAI 发布了 DALL・E 3,这一消息瞬间点燃了整个科技圈,引发了广泛的关注和讨论。从技术极客到艺术创作者,从商业巨头到普通大众,大家都在热议这个全新的 AI 绘画工具。它究竟有着怎样的魔力,能够吸引如此多的目光?是突破性的技术创新,还是令人惊艳的图像生成效果?亦或是其背后隐藏着改变行业格局的巨大潜力?在本文中,我将对 DALL・E 3 进行全面而深入的剖析,带你揭开它神秘的面纱,一同探索它在技术原理、图像生成能力、应用场景等方面的独特之处,以及它可能给我们的生活和工作带来的深远影响。

二、DALL・E 3 是什么

DALL・E 3 是 OpenAI 公司开发的一款先进的文本生成图像 AI 工具 ,它是 DALL・E 系列的最新版本,代表了 OpenAI 在图像生成领域的又一次重大突破。DALL・E 3 能够根据用户输入的文本描述,生成高度逼真且富有创意的图像,将文字中的想象世界转化为视觉画面。

与 ChatGPT 的集成是 DALL・E 3 的一大显著特点。它原生构建在 ChatGPT 之上,用户可以利用 ChatGPT 强大的语言理解和生成能力来创建、拓展和优化图像生成的提示词(prompt)。这意味着,当你有一个模糊的图像创作想法时,无需花费大量时间去构思复杂、详细的 prompt,只需向 ChatGPT 输入一个简单的句子或段落,ChatGPT 就会自动为 DALL・E 3 生成量身定制的、详细且精准的 prompt,引导 DALL・E 3 生成符合你预期的图像。 例如,你只需要说 “我想要一幅梦幻森林的画”,ChatGPT 会帮你拓展出如 “一幅阳光透过茂密树叶洒在铺满彩色蘑菇的森林地面上的超现实梦幻森林油画,森林中有一条蜿蜒的小溪,溪水闪烁着金色的光芒,远处有一座古老的城堡若隐若现” 这样详细的提示词,让 DALL・E 3 据此生成令人惊叹的图像。 这种集成不仅降低了用户使用图像生成工具的门槛,还大大提升了生成图像与用户想法的契合度 ,使得图像创作变得更加轻松和高效。

三、DALL・E 3 的技术原理

(一)基础技术架构

DALL・E 3 的技术架构是其实现强大图像生成能力的基石,它融合了多种先进的技术组件,其中 Transformer 架构和扩散模型是两个关键部分。

Transformer 架构最早由谷歌在 2017 年提出,其核心特点是自注意力机制(Self-Attention) 。在 DALL・E 3 中,Transformer 架构主要负责处理文本输入。当用户输入一段文本描述时,Transformer 架构中的编码器(Encoder)会对文本进行编码和价值特征提取。它能够让模型评估句子中各个词的重要性,根据上下文锁定关键信息,从而捕捉文本中长距离的依赖关系。例如,当输入 “一只在绿色草地上追逐红色皮球的金毛犬” 这样的描述时,Transformer 架构可以准确理解 “金毛犬” 是主体,“绿色草地” 和 “红色皮球” 是相关的环境和物品,以及 “追逐” 这个动作,为后续的图像生成提供准确的文本理解基础。与传统的神经网络算法相比,Transformer 的并行处理能力很强,能同时处理输入文本的各个部分,无需按顺序处理,这极大地提高了模型计算和训练的速度,使得 DALL・E 3 能够快速响应用户的输入。

扩散模型(Diffusion Model)在 DALL・E 3 的图像生成过程中起着核心作用。其工作原理基于一个逐步去噪的过程,通过前向扩散(加噪)和反向扩散(去噪)不断修正训练自己,以生成更好的图像样本。在正向扩散过程中,模型会将初始图像逐渐添加噪声,使其逐渐变成一个接近于各向同性的高斯分布,这个过程是确定性的,并且逐步丢失信息。而在逆向去噪过程中,模型从纯噪声开始,通过学习一个去噪网络,逐步去除噪声,恢复到原始数据,最终生成目标图像。与其他图像生成模型(如生成对抗网络 GAN)相比,扩散模型生成的图像往往具有更细腻的细节,在高分辨率图像生成方面表现出色,且能够生成更多样化的样本,避免了模式崩溃问题。在生成一幅风景图像时,扩散模型可以更精准地描绘出山脉的纹理、湖水的波光等细节,同时生成的图像风格和内容更加丰富多样。

(二)改进的图像描述生成

在文本生成图像的任务中,确保模型能够准确理解文本并生成与之匹配的图像是关键挑战之一。DALL・E 3 通过改进训练数据集中的图像描述(caption)来提升模型性能,其核心方法是训练一个强大的图像字幕生成器(image captioner) 。

OpenAI 基于谷歌的 CoCa(Contrastive Captioners)模型,微调得到了这个图像字幕生成器。该模型的训练过程如下:首先,将输入的文本字符化,将离散的字符用序列表征。然后,构建一个语言模型,通过最大化定义的似然函数来学习生成连贯的文字描述。由于图像由数千个像素值组成,直接对所有像素信息进行调节效率很低,因此利用 CLIP(Contrastive Language-Image Pretraining)图像编码器将图像编码为一个固定长度的向量,包含图像的语义信息,以此来压缩图像表征空间,再将图像特征向量与之前的单词序列一同输入到语言模型中,实现对图像的条件文本生成。通过这样的训练,图像字幕生成器学会为每张图像生成细致的描述。

为了进一步提高图像描述的质量,OpenAI 对这个图像字幕生成器进行了两次微调。第一次,构造一个小的只对图像主体描述的字幕数据集,对模型进行微调,使模型偏好生成图像主体的提示词,生成的字幕称为 “短合成字幕”(short synthetic captions,SSC) 。第二次,构造一个大的详细描述的字幕数据集,包括图像中主体及其环境、背景、文字、风格、颜色等细节,再次进行微调,生成的字幕称为 “描述性合成字幕”(descriptive synthetic captions,DSC) 。使用这些高质量的合成字幕重新训练 DALL・E 3,显著提升了模型对提示词的理解和遵循能力,使得生成的图像与文本描述更加匹配。

四、DALL・E 3 的强大功能

(一)理解能力提升

DALL・E 3 在对文本提示的理解能力上相较于 DALL・E 2 有了质的飞跃 。在 DALL・E 2 中,当输入较为复杂或抽象的文本描述时,常常会出现生成图像与描述不完全匹配的情况。比如输入 “一个在宇宙中骑着独角兽的超级英雄,周围是闪烁的星系和五彩斑斓的星云,超级英雄手持一把散发着蓝光的能量剑”,DALL・E 2 生成的图像可能会出现独角兽形态怪异、星系和星云的表现不够逼真,或者能量剑的蓝光效果不明显等问题,这是因为它对文本中各元素之间的关系以及细节特征的理解不够精准。

而 DALL・E 3 通过改进训练数据集中的图像描述,利用强大的图像字幕生成器生成更细致、准确的图像描述,并在大量高质量的合成字幕数据上进行训练,显著提升了对提示词的理解和遵循能力 。同样以上述复杂描述为例,DALL・E 3 能够精准把握超级英雄、独角兽、宇宙环境、能量剑等元素之间的关系,生成的图像中,独角兽的姿态优雅,毛发细节清晰,超级英雄的形象鲜明,能量剑的蓝光与周围的星系、星云相互映衬,整个画面的色彩和光影效果都与描述高度契合,生动地展现出了一个奇幻的宇宙场景。这种对复杂文本的准确理解和图像生成能力,使得用户能够更轻松地将自己脑海中的想象转化为具体的图像。

(二)图像生成质量

DALL・E 3 生成的图像在质量上有了显著的提升,从多个维度展现出其卓越的表现。

在细节方面,DALL・E 3 生成的图像更加丰富和细腻。以生成一幅动物图像为例,DALL・E 3 可以清晰地描绘出动物的毛发纹理,每一根毛发的走向和质感都栩栩如生,动物的眼睛中也能呈现出丰富的细节,如瞳孔的光泽、眼白的血丝等,让动物的神态更加生动。在描绘物体时,像金属的质感、木材的纹理、布料的褶皱等细节也都能精准呈现。生成一个复古风格的木质书桌,桌面上的木纹清晰可见,抽屉的拉手的金属质感也十分逼真,甚至可以看到拉手表面因为长期使用而产生的磨损痕迹。

图像的清晰度也得到了极大的提高。DALL・E 3 生成的图像边缘更加锐利,没有模糊或锯齿的现象,即使将图像放大数倍,依然能够保持清晰的细节。无论是复杂的场景还是微小的元素,都能以高清晰度呈现出来,满足了用户对高质量图像的需求,尤其是在需要用于印刷、高清展示等场景下,DALL・E 3 的图像清晰度优势更加明显。

色彩方面,DALL・E 3 生成的图像色彩更加鲜艳、丰富且自然。它能够准确地理解文本描述中的色彩要求,并在图像中生动地呈现出来。当输入 “一幅春天花园的画,有红色的玫瑰、黄色的郁金香、紫色的薰衣草和绿色的草地”,DALL・E 3 生成的图像中,各种花朵的颜色鲜艳欲滴,相互映衬,草地的绿色也层次分明,给人一种身临其境的感觉,仿佛真的置身于一个充满生机的春天花园中。

(三)与 ChatGPT 集成优势

DALL・E 3 与 ChatGPT 的集成是其一大创新亮点,为用户带来了诸多便利和优势 。

ChatGPT 强大的语言理解和生成能力能够帮助 DALL・E 3 优化提示词。当用户向 ChatGPT 输入一个简单的图像创作想法时,ChatGPT 会根据这个想法进行深入分析和拓展,生成详细、精准的提示词。比如用户说 “我想要一幅科幻城市的画”,ChatGPT 会将其拓展为 “一幅未来感十足的科幻城市图像,城市中高楼大厦林立,建筑的表面覆盖着闪烁的霓虹灯和全息投影广告,天空中有飞行汽车穿梭,街道上有机器人在忙碌工作,地面上是发着蓝光的能量轨道,城市的背景是深邃的星空和绚丽的极光”。这样详细的提示词能够为 DALL・E 3 提供更明确的指导,使其生成的图像更符合用户的预期。这种集成方式大大降低了用户使用图像生成工具的门槛,即使是没有专业图像创作知识和经验的普通用户,也能轻松地通过简单的语言描述创作出高质量的图像。

在实际交互生成图像的过程中,用户可以与 ChatGPT 进行多次对话,不断完善图像的细节。如果用户对生成的科幻城市图像中的飞行汽车不满意,觉得数量太少或者样式不够新颖,只需向 ChatGPT 提出修改意见,如 “增加飞行汽车的数量,并且让它们的样式更加多样化,有些可以是三角形的,有些可以是球形的”,ChatGPT 会根据这些反馈重新生成提示词,引导 DALL・E 3 生成修改后的图像。这种交互式的图像生成流程,让用户能够更加灵活地掌控图像的生成过程,实现自己的创意想法。

五、应用场景

(一)创意设计领域

在广告设计中,DALL・E 3 展现出了强大的助力。一家广告公司为某新款电动汽车制作宣传广告,设计师利用 DALL・E 3 生成创意草图。设计师向 ChatGPT 描述需求:“我想要一张突出新款电动汽车科技感和速度感的广告草图,背景是充满未来感的城市夜景,电动汽车在城市街道上飞驰,车身线条流畅,周围有蓝色的光带和星星闪烁的特效,展示出其高性能和环保的特点。”ChatGPT 根据这一描述,为 DALL・E 3 生成详细的提示词,DALL・E 3 迅速生成了多张草图。这些草图中,有的展现了电动汽车在高楼大厦间穿梭的动态画面,有的突出了汽车独特的外观设计,为设计师提供了丰富的创意灵感,大大缩短了创意构思的时间。

在海报设计方面,DALL・E 3 也发挥了重要作用。比如为一场音乐节设计海报,设计师输入 “一张充满活力的音乐节海报,有知名乐队在舞台上激情演奏,台下观众欢呼雀跃,舞台周围有绚丽的灯光和飘扬的彩带,天空中是五彩斑斓的烟花,海报整体风格充满艺术感和摇滚氛围”。DALL・E 3 生成的海报草图中,乐队成员的形象生动,观众的热情洋溢在脸上,灯光和烟花的效果逼真,为海报设计提供了精彩的视觉概念,设计师只需在此基础上进行进一步的细化和完善,就能完成海报设计。

对于 logo 设计,DALL・E 3 同样能提供有力支持。一家新兴的科技公司希望设计一个代表创新和科技的 logo,设计师向 DALL・E 3 输入描述:“一个简洁而富有科技感的 logo,主体形状为六边形,内部有一个旋转的齿轮和闪烁的电路线条,颜色以蓝色和银色为主,体现科技公司的专业和创新精神。”DALL・E 3 生成了多个 logo 设计草图,每个草图都各具特色,设计师从中挑选出满意的设计进行修改和优化,最终得到了符合公司形象的 logo。

插画师在创作插画时,也可以借助 DALL・E 3 快速生成创意草图。例如,一位插画师要创作一组儿童绘本插画,主题是森林里的小动物们的冒险故事。插画师向 DALL・E 3 描述:“一幅森林场景的插画,有可爱的小兔子、小松鼠和小熊在森林中玩耍,森林里有高大的树木、五颜六色的花朵和清澈的小溪,天空中有飞翔的小鸟,画面充满童趣和奇幻色彩。”DALL・E 3 生成的草图为插画师提供了丰富的画面元素和构图灵感,插画师可以根据这些草图进行深入创作,提高创作效率。

(二)内容创作方面

在小说创作中,DALL・E 3 可以帮助作者将脑海中的场景和角色可视化。比如一位科幻小说作者在创作一部关于星际冒险的小说时,对于宇宙飞船的外观和外星生物的形象没有清晰的概念,他向 ChatGPT 描述:“我需要设计一艘未来感十足的宇宙飞船,它的外形像一只展翅的雄鹰,表面有金属光泽,有巨大的推进器和闪烁的能量护盾,周围是浩瀚的宇宙星空和闪烁的星系。另外,我还需要设计一种外星生物,它们身形修长,有三只眼睛,身体是透明的,可以看到内部的器官,器官发出柔和的蓝光。”ChatGPT 为 DALL・E 3 生成详细提示词后,DALL・E 3 生成的宇宙飞船和外星生物的图像,让作者对小说中的关键元素有了更直观的认识,有助于他在写作中更生动地描述这些元素,丰富小说的内容。

漫画创作者也能从 DALL・E 3 中受益。当构思一个新的漫画故事时,创作者可以利用 DALL・E 3 生成角色和场景的概念图。比如要创作一部武侠漫画,创作者向 DALL・E 3 输入:“一个武侠风格的场景,一座古老的客栈,门口有红灯笼,店内有喝酒的江湖人士,店小二在忙碌地招呼客人,墙上挂着刀剑。主角是一位身着黑色长袍,手持长剑,眼神坚毅的侠客。”DALL・E 3 生成的图像为漫画创作者提供了画面布局和角色设计的参考,帮助他们更快地确定漫画的风格和内容,加速漫画创作的进程。

在影视创作中,DALL・E 3 的作用更加显著。电影导演在筹备一部奇幻电影时,对于一些奇幻场景和生物的设计可能会感到困惑。例如,导演想要设计一个神秘的魔法森林场景,向 DALL・E 3 描述:“一片巨大的魔法森林,树木高大且扭曲,树干上闪烁着神秘的符文,树叶是五颜六色的,森林中弥漫着紫色的雾气,有会发光的小精灵在飞舞,地面上有奇异的发光蘑菇。”DALL・E 3 生成的图像为导演提供了直观的视觉参考,帮助导演与美术团队、特效团队沟通,准确传达自己的创作意图,从而更好地实现电影中的奇幻场景。对于电影中的角色设计,如超级英雄的造型、反派的形象等,DALL・E 3 也能生成概念图,为影视创作提供灵感和创意支持。

(三)教育科研用途

在教育领域,DALL・E 3 可以辅助教师制作教学材料,使教学内容更加生动形象。例如,在物理教学中,教师讲解光的折射原理时,向 DALL・E 3 输入:“一张展示光在不同介质中折射的图像,有一个玻璃三棱镜,一束白光从空气中射入三棱镜,经过折射后在另一侧分解成红、橙、黄、绿、蓝、靛、紫七种颜色的光。”DALL・E 3 生成的图像能够直观地展示光的折射现象,帮助学生更好地理解这一抽象的物理概念。在生物教学中,教师讲解细胞结构时,利用 DALL・E 3 生成细胞的详细图像,包括细胞膜、细胞核、线粒体等细胞器的形态和位置,让学生更清晰地认识细胞的结构和功能。

在科研方面,DALL・E 3 可用于科学概念的可视化。比如在天文学研究中,研究人员想要展示星系的演化过程,向 DALL・E 3 输入:“一系列展示星系从原始星云逐渐聚集形成恒星,恒星演化、死亡,星系结构不断变化的图像,每个阶段都有相应的标注和说明。”DALL・E 3 生成的图像序列能够帮助研究人员更直观地展示星系演化的过程,便于他们在学术报告、论文中阐述研究成果,也有助于同行之间的交流和理解。在化学研究中,研究人员可以利用 DALL・E 3 生成分子结构的图像,如复杂有机分子的三维结构,帮助他们更好地理解分子的性质和反应机理。

六、挑战与局限

(一)版权争议

DALL・E 3 在版权方面存在诸多争议。一方面,训练数据的使用引发了版权问题。DALL・E 3 在训练过程中使用了大量来自互联网的图像数据,这些数据的版权归属复杂多样。部分艺术家和摄影师发现,自己的作品未经授权就被用于模型训练,这侵犯了他们的版权。一些艺术家起诉图像生成初创企业,指控其未经允许使用自己的作品训练人工智能图像生成器,虽然在美国使用网络内容训练 AI 软件通常被视为版权法中的 “公平使用”,但此类案件仍引发了广泛讨论。

另一方面,生成图像的版权归属也存在不确定性。DALL・E 3 生成的图像是基于算法和训练数据的合成结果,其版权究竟属于 OpenAI 公司、输入文本描述的用户,还是处于公共领域,目前并没有明确的法律界定。这可能导致在图像使用过程中出现版权纠纷,例如当用户将生成的图像用于商业用途时,可能会面临版权侵权的风险。

(二)生成内容偏差

DALL・E 3 在理解特定文化和复杂语义时,生成图像可能会出现偏差。由于 DALL・E 3 的训练数据来自全球范围,不同文化背景下的概念和语义存在差异,这使得模型在处理一些具有文化特定内涵的概念时,难以精准把握其精髓。当要求生成具有中国传统文化元素的图像时,如中国传统节日的场景、京剧人物形象等,DALL・E 3 生成的图像可能只是表面上呈现了一些元素,如红色的灯笼、脸谱的形状等,但对于其中蕴含的文化寓意和独特风格的展现不够深入,缺乏内在的文化韵味。

在处理复杂语义时,DALL・E 3 也存在不足。当输入包含多个元素且元素之间关系复杂的文本描述时,模型可能无法准确理解各元素之间的逻辑关系和空间位置关系,导致生成的图像出现元素形态不准确、空间布局混乱等问题。要求生成一个 “在花园中,小女孩坐在秋千上,旁边有一只小狗在玩耍,天空中有几只彩色气球飘着” 的场景,DALL・E 3 生成的图像可能会出现小狗和小女孩的比例不协调,气球的位置和光影效果与整体场景不匹配等情况。

(三)安全隐患

DALL・E 3 存在一定的安全隐患。它可能被用于生成虚假信息,如虚假的新闻图片、误导性的广告图像等。在信息传播快速的今天,这些虚假图像可能会在网络上迅速扩散,误导公众,影响社会舆论和公众认知。曾有案例显示,通过 AI 生成的虚假名人照片和事件图片在网络上广泛传播,引发了公众的误解和关注。

DALL・E 3 还可能生成有害内容,如暴力、色情、仇恨等不良信息。虽然 OpenAI 采用了多层安全系统,限制其生成潜在有害图像的能力,在向用户呈现生成的图像之前,会对用户的提示和生成的图像进行安全检查,但仍难以完全杜绝此类情况的发生。有用户发现通过一些特殊的提示词组合,可以绕过 AI 的限制,生成不当内容,如儿童吸烟的图像等。

此外,DALL・E 3 在使用过程中还存在隐私泄露的风险。用户输入的文本提示和生成的图像可能包含个人敏感信息,若 OpenAI 的安全防护措施不到位,这些信息可能会被泄露,给用户带来潜在的风险。

七、未来展望

(一)技术发展方向

在未来,DALL・E 3 有望在多模态融合方面取得更大突破。当前虽然已经实现了与 ChatGPT 的集成,但未来可能会进一步融合更多模态,如音频、视频等 。这意味着它不仅能根据文本生成图像,还能结合音频元素生成动态的视觉场景,或者根据视频内容生成相关的图像序列,实现跨模态的创意生成和交互。比如,输入一段音乐和一段文字描述,DALL・E 3 就能生成一段与音乐节奏和文字内容相匹配的动画视频,为用户带来更加丰富和沉浸式的创作体验。

在生成可控性方面,DALL・E 3 也可能会有显著的提升。目前虽然能够理解和遵循文本提示生成图像,但在一些复杂场景下,对于图像元素的精确控制还存在一定的局限。未来,模型可能会提供更细粒度的控制选项,用户可以更精准地调整图像中物体的位置、大小、颜色、材质等属性,甚至可以实时调整图像的风格、氛围和情感表达。例如,在生成一幅风景图像时,用户可以通过滑动条等交互方式,实时改变天空的颜色、云朵的形状、树木的密度等,直到生成完全符合自己心意的图像。

(二)对行业的影响

在设计行业,DALL・E 3 的发展将促使设计师的角色发生转变。设计师不再仅仅是传统的绘图者,而是更多地承担起创意策划和概念设计的角色。他们需要具备更强的创意构思和问题解决能力,能够利用 DALL・E 3 快速生成多种设计方案,并从中筛选和优化出最符合需求的设计。这也意味着对设计师的综合素质要求将更高,他们不仅要掌握设计软件和工具,还需要了解人工智能技术的应用,具备良好的沟通和协作能力,以便与其他团队成员(如数据科学家、工程师等)共同完成项目。对于设计教育而言,也需要相应地调整教学内容和方法,培养学生的创新思维和人工智能应用能力。

艺术领域也将受到深远影响。一方面,DALL・E 3 为艺术家提供了全新的创作工具和灵感来源,艺术家可以利用它快速验证自己的创意想法,突破传统创作的限制,探索更多的艺术表现形式。另一方面,这也可能引发关于艺术本质和价值的讨论,促使艺术家更加注重作品的独特性和情感表达,以区别于 AI 生成的作品。在艺术教育中,可能会更加注重培养学生的审美能力、文化素养和批判性思维,帮助他们理解和应对 AI 技术对艺术创作的影响。

在传媒行业,DALL・E 3 将加速内容生产的数字化和智能化进程。新闻媒体可以利用它快速生成新闻配图、视频素材等,提高新闻报道的效率和吸引力;广告行业可以更快速地生成创意广告图像和视频,满足市场对快速迭代和个性化广告的需求;影视制作公司可以利用它进行前期的概念设计、场景规划和特效预览,降低制作成本和风险。这也对传媒行业的人才提出了新的要求,需要他们具备数字内容创作、人工智能技术应用和数据分析等多方面的能力,以适应行业的数字化转型。

八、结论

DALL・E 3 作为 AI 绘画领域的佼佼者,凭借其先进的技术架构,如 Transformer 架构与扩散模型的精妙融合,在图像生成能力上实现了质的飞跃。它对文本提示的理解更加精准,生成的图像质量显著提升,细节丰富、色彩鲜艳,与 ChatGPT 的集成更是开创了全新的交互体验,为用户带来了极大的便利。

在创意设计、内容创作、教育科研等众多领域,DALL・E 3 都展现出了巨大的应用价值,推动了各行业的创新发展,提高了工作效率和创作质量。然而,它也面临着诸多挑战,版权争议、生成内容偏差以及安全隐患等问题亟待解决。

尽管如此,DALL・E 3 的未来依然充满希望。随着技术的不断发展,多模态融合和生成可控性的提升将为其开拓更广阔的发展空间,也将对设计、艺术、传媒等行业产生更为深远的影响。我们应持续关注 DALL・E 3 的发展,充分发挥其优势,积极应对挑战,让这一强大的 AI 工具为人类创造更多的价值 。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

计算机学长

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值