optimization
敲代码的quant
ML/DL/量化金融/学生
展开
-
【优化】近端梯度下降使Lasso线性回归问题求得最优解的证明
转自周志华教授的西瓜书。没想到周志华教授的西瓜书中也对PGD求解Lasso问题进行了讲解,看来抽时间需要再好好刷一遍这本书了。证明:其中,求解向量xxx的分量xix_{i}xi时,只需要按照求解一元方程的方式,对进行xix_{i}xi的正负进行讨论就可以求解了。...转载 2020-04-29 14:41:26 · 1534 阅读 · 0 评论 -
【优化】近端梯度下降(Proximal Gradient Descent)求解Lasso线性回归问题
近端梯度下降近端梯度下降(Proximal Gradient Descent, PGD)是众多梯度下降算法中的一种,与传统的梯度下降算法以及随机梯度下降算法相比,近端梯度下降算法的使用范围相对狭窄,对于凸优化问题,PGD常用与目标函数中包含不可微分项时,如L1L1L1范数、迹范数或者全变正则项等。常见线性回归问题很多优化问题都可以转换为线性回归问题,假设线性回归的表达式是y=Xwy = Xw...原创 2020-04-28 17:07:04 · 8579 阅读 · 1 评论 -
【优化】利普希茨连续(Lipschitz continuous)及其应用
Lipschitz常数Lipschitz常数的定义是:对于函数y=f(x)y = f(x)y=f(x),其中x∈Dx \in Dx∈D,如果存在L∈RL \in RL∈R,使得对于任意x1,x2∈Dx_{1}, x_{2} \in Dx1,x2∈D,有∣f(x1)−f(x2)∣≤L∣x1−x2∣|f(x_{1}) - f(x_{2})| \leq L|x_{1} - x_{2}|∣f(x1...原创 2020-04-26 21:18:50 · 26724 阅读 · 1 评论