在许多任务中,我们需要扫描图像中所有的像素点。考虑到那么多的像素点,这势必就需要一种高效率的方法。而减少图像颜色数就是一种比较好的方法。
试想一下一个三通道的图像,如果每一个通道是一个八位的无符号字符型数据,那么他总共可以表示的颜色达到256X256X256种。通常情况下,为了简化复杂度,减少颜色数是一种很好的方法。其中比较简便的做法是除以一个数,使RGB空间减少一个数量等级,例如除以8,那么颜色数就会减少到32X32X32个。
因此,基础的减少公式很简单。如果N是减少因子,那么对于像素的每一个频道,除以N(由于是整除,所以余数会丢失)。如果将结果再乘以N,那么结果将会小于原来的像素值。然后再加上N/2你将会获得两个相邻N倍数中间的那个数,然后你就得到了一个256/NX256/NX256/N颜色数的图像。下面是我们所写的函数,函数处理是in-place的,也就是说处理结果直接赋值给源图像,不占用额外的存储空间。以下是完整的程序:
#include<opencv2/highgui/highgui.hpp>
#include<opencv2/core/core.hpp>
#include<iostream>
using namespace cv;
void colorReduce(Mat &image, int div = 64)
{
int nl = image.rows;
int nc = image.cols * image.channels();
for (int i=0 ; i<nl ; i++)
{
//获得每一行首地址
uchar* data = image.ptr<uchar>(i);
for(int j=0; j<nc ; j++)
data[j] = data[j]/div * div + div/2;
}
}
int main()
{
Mat image = imread("boldt.jpg");
if(!image.data)
return 0;
colorReduce(image);
cv::namedWindow("result");
cv::imshow("result",image);
waitKey(0);
return 0;
}