OpenCV 2 学习笔记(6): 使用指针来扫描图像:减少图像的位深

本文介绍了如何使用OpenCV通过指针高效地扫描图像,并通过减少位深度来简化图像颜色,从而提高处理效率。讨论了如何进行in-place处理,以及在保持原始图像不变的情况下进行处理的方法,包括利用指针运算、位操作和矩阵重塑等技术。
摘要由CSDN通过智能技术生成

在许多任务中,我们需要扫描图像中所有的像素点。考虑到那么多的像素点,这势必就需要一种高效率的方法。而减少图像颜色数就是一种比较好的方法。

         试想一下一个三通道的图像,如果每一个通道是一个八位的无符号字符型数据,那么他总共可以表示的颜色达到256X256X256种。通常情况下,为了简化复杂度,减少颜色数是一种很好的方法。其中比较简便的做法是除以一个数,使RGB空间减少一个数量等级,例如除以8,那么颜色数就会减少到32X32X32个。

因此,基础的减少公式很简单。如果N是减少因子,那么对于像素的每一个频道,除以N(由于是整除,所以余数会丢失)。如果将结果再乘以N,那么结果将会小于原来的像素值。然后再加上N/2你将会获得两个相邻N倍数中间的那个数,然后你就得到了一个256/NX256/NX256/N颜色数的图像。下面是我们所写的函数,函数处理是in-place的,也就是说处理结果直接赋值给源图像,不占用额外的存储空间。以下是完整的程序:

#include<opencv2/highgui/highgui.hpp>
#include<opencv2/core/core.hpp>
#include<iostream>
using namespace cv;

void colorReduce(Mat &image, int div = 64)
{
	int nl = image.rows;
	int nc = image.cols * image.channels();

	for (int i=0 ; i<nl ; i++)
	{
//获得每一行首地址
		uchar* data = image.ptr<uchar>(i);

		for(int j=0; j<nc ; j++)

			data[j] = data[j]/div * div + div/2;
	}
}

int main()
{
	Mat image = imread("boldt.jpg");
	if(!image.data)
		return 0;
	colorReduce(image);
	cv::namedWindow("result");
	cv::imshow("result",image);
	waitKey(0);
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值