跳石板

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/freedom098/article/details/79814633

小易来到了一条石板路前,每块石板上从1挨着编号为:1、2、3…….
这条石板路要根据特殊的规则才能前进:对于小易当前所在的编号为K的 石板,小易单次只能往前跳K的一个约数(不含1和K)步,即跳到K+X(X为K的一个非1和本身的约数)的位置。 小易当前处在编号为N的石板,他想跳到编号恰好为M的石板去,小易想知道最少需要跳跃几次可以到达。
例如:
N = 4,M = 24:
4->6->8->12->18->24
于是小易最少需要跳跃5次,就可以从4号石板跳到24号石板
输入描述:
输入为一行,有两个整数N,M,以空格隔开。 (4 ≤ N ≤ 100000) (N ≤ M ≤ 100000)
输出描述:
输出小易最少需要跳跃的步数,如果不能到达输出-1
示例1
输入
4 24
输出
5

基本类似于jump game那道题,但是这里跳跃的step有了限制,就是i的约数,所以这里要多一层循环来遍历这些约数,分别更新dp数组。
注意一下几个点:

  1. dp一开始全部初始化为最大值,一是因为要找最小,dp代表的是到本位置所需要的最小步数;二表示这个位置不可达。
  2. dp数组中起始位置需要设置为0,表示这里可达且是初始位置,最少0步就到了。
  3. 判断约数的时候,搜索到根号下i即可,后面的约数可以用i除得到,这样省去了搜索约数的时间。

python代码,没有完全通过,应该是因为python本身比较慢的原因。

start, end = map(int, input().strip().split())

INTMAX = 99999999999999
dp = [INTMAX]*(end+1)
dp[start] = 0
for i in range(start, end+1):
    if dp[i] == INTMAX:
        continue
    j = 2
    while (j * j <= i):
        if i%j == 0:
            if i+j <= end:
                dp[i+j] = min(dp[i]+1, dp[i+j])
            if i+(i//j) <= end:
                dp[i + i//j] = min(dp[i] + 1, dp[i + i//j])
        j += 1
if dp[end] != INTMAX:
    print(dp[end])
else:
    print(-1)
展开阅读全文

没有更多推荐了,返回首页