人工智能教程 - 数学基础课程1.1 - 数学分析(一)15-17 微分方程和分离变量,定积分及性质,微积分第一定理

本文介绍了微分方程的概念,通过实例解析了微分方程的求解过程,如湮没算符在量子力学中的应用。接着讨论了分离变量法解微分方程,并探讨了定积分的计算及其在求解面积问题中的应用。同时,提到了微积分第一定理,阐述了定积分的性质,并简要提及了变量替换在积分计算中的作用。内容涵盖了正态分布函数,为理解人工智能中的数学基础提供了指导。
摘要由CSDN通过智能技术生成

微分方程 differential equation

Ex:
d y d x = f ( x ) \frac{dy}{dx} = f(x) dxdy=f(x)
y = ∫ f ( x ) d x y= \int f(x) dx y=f(x)dx

solved substitution

Ex2:
( d d x + x ) (\frac{d}{dx}+x) (dxd+x)为annihilation operator 湮没算符 in quantum mechnics
d y d x = − x y \frac{dy}{dx} = -xy dxdy=xy
d y y = − x d x \frac{dy}{y} = -xdx ydy=xdx
∫ d y y = − ∫ x d x \int \frac{dy}{y} = -\int xdx ydy=xdx
l n y = − x 2 / 2 + C ln y = -x^2/2 +C lny=x2/2+C
e l n y = e − x 2 / 2 + C e^{lny} = e^{-x^2/2}+C elny=ex2/2+C
y = A e − x 2 / 2 ( A = e c ) y = Ae^{-x^2/2} (A=e^c) y=Aex2/2(A=ec)
Solution:
y = a e − x 2 / 2   a n y   a y = ae^{-x^2/2} \ any \ a y=aex2/2 any a
d y d x = a . d d x . e − x 2 / 2 \frac{dy}{dx} = a.\frac{d}{dx} . e^{-x^2/2} dxdy
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值