人工智能之数学基础----求解微分问题

本章主要讲解微分的方法求解的常用公式

  • 使用定义求导
  • 使用乘积法则、商法则、链式法则
  • 切线方式
  • 如何对分段函数求导

使用定义求导

上一章我们知道公式f'(x)=\lim_{h\rightarrow 0}\frac{f(x+h)-f(x)}{h}=\lim_{\Delta \rightarrow 0}\frac{\Delta y}{\Delta x}=\frac{dy}{dx}

【例】函数f(x)=\frac{1}{x};求函数f(x)的导数

  利用公式:
f'(x)=\lim_{h\rightarrow 0}\frac{f(x+h)-f(x)}{h}

         =\lim_{h\rightarrow 0}\frac{\frac{1}{x+h}-\frac{1}{x}}{h}                                 代入值 x=\frac{1}{x}

         =\lim_{h\rightarrow 0}\frac{\frac{1}{x+h}\times \frac{x}{x}-\frac{1}{x}\times \frac{x+h}{x+h}}{h}              对分子化简同分母

         =\lim_{h\rightarrow 0}\frac{\frac{h}{x(x+h)}}{h}                                    化简分子

         =\lim_{h\rightarrow 0}\frac{1}{x(x+h)}=-\frac{1}{x^{2}}                      当h无限趋于0的时候可以忽略h,所以消掉h

根据公式也就是说f'(x)=\frac{dy}{dy}=\frac{d}{dx}(\frac{1}{x})=-\frac{1}{x^{2}};计算证明,对于任意的\frac{d}{dx}(x^{n})=nx^{n-1}

a为任意实数\frac{d}{dx}(x^{a})=ax^{a-1}
C为常数\frac{d}{dx}(C)=0

 【例】

          x^{2}=2x

          3x^{7}=21x^{6}

         \sqrt[3]{x}=x^{\frac{1}{3}}=\frac{1}{3}x^{(\frac{1}{3}-1)}=\frac{1}{3}x^{-\frac{2}{3}}

函数和与函数差

   函数和与函数差法则:就是把函数的每个部分都分别求导,最后把各个部分相加、减就可以

【例】函数f(x)=3x^{5}-2x^{2}+\frac{7}{\sqrt{x}}+2

                            =15x^{4}-4x+7\times (-\frac{1}{2})x^{-\frac{1}{2}-1}

                            =15x^{4}-4x-\frac{7}{2}x^{-\frac{3}{2}}

                           =15x^{4}-4x-\frac{7}{2}\frac{1}{x\sqrt{x}}

乘积法则求函数导数

乘积法则(版本一);如果h(x)=f(x)g(x)=f'(x)g(x)+f(x)g'(x)

【例】求函数h(x)=(x^{5}+2x-1)(3x^{8}-2x^{7}-x^{4}-3x) 的导数

       令:f(x)=x^{5}+2x-1                                                   f'(x)=5x^{4}+2

               g(x)=3x^{8}-2x^{7}-x^{4}-3x                                    g'(x)=24x^{7}-14x^{6}-4x^{3}-3

               利用乘积法则公式得

             h(x)=f'(x)g(x)+f(x)g'(x)

                     =(5x^{4}+2)(x^{5}+2x-1)+(24x^{7}-14x^{6}-4x^{3}-3)(3x^{8}-2x^{7}-x^{4}-3x)

        最后将结果乘开,但是这个结果比较糟糕,我们就保持原样吧

乘积法则(版本二)如果y=uv,则\frac{dy}{dx}=v\frac{du}{dx}+u\frac{dv}{dx}

              【例】函数:y=(x^{3}+2x)(3x+\sqrt{x}+1);求微分

                         令:u=x^{3}+2x                                    \frac{du}{dx}=3x^{2}+2

                                 v=3x+\sqrt{x}+1                           \frac{dv}{dx}=3+\frac{1}{2\sqrt{x}}

                          利用乘积公式:\frac{dy}{dx}=v\frac{du}{dx}+u\frac{dv}{dx}

                                                  =(x^{3}+2x)(3+\frac{1}{2\sqrt{x}})+(3x+\sqrt{x}+1)(3x^{2}+2)

乘积法则(三个变量)如果y=uvw,则\frac{dy}{dx}=\frac{du}{dx}vw+u\frac{dv}{dx}w+uv\frac{dw}{dx}

 【例】函数 y=(x^{2}+1)(x^{2}+3x)(x^{5}+2x^{4}+7);求导数

          令:u=x^{2}+1                                        \frac{du}{dx}=2x     

                 v=x^{2}+3x                                       \frac{dv}{dx}=2x+3

                 w=x^{5}+2x^{4}+7                               \frac{dw}{dx}=5x^{4}+8x^{3}

          利用乘积公式 \frac{dy}{dx}=\frac{du}{dx}vw+u\frac{dv}{dx}w+uv\frac{dw}{dx}

                                 =(2x)(x^{2}+3x)(x^{5}+2x^{4}+7)+(x^{2}+1)(2x+3)(x^{5}+2x^{4}+7)+(x^{2}+1)(x^{2}+3x)(5x^{4}+8x^{3})

通过商法则求商函数的导数

商法则(版本一)如果h(x)=\frac{f(x)}{g(x)};那么h'(x)=\frac{f'(x)g(x)-f(x)g'(x)}{(g(x))^{2}}

【例】函数h(x)=\frac{2x^{3}-3x+1}{x^{5}-8x^3+2};求商函数的导数

         令:f(x)=2x^{3}-3x+1                    f'(x)=6x^{2}-3

                  g(x)=x^{5}-8x^3+2                   g(x)=5x^{4}-24x^2

      利用商法则:h'(x)=\frac{f'(x)g(x)-f(x)g'(x)}{(g(x))^{2}}

                                    h'(x)=\frac{(6x^{2}-3)(x^{5}-8x^{3}+2) +(5x^{4}-24x^{2})(2x^{3}-3x+1)}{(x^{5}-8x^{3}+2)^{2}}

商法则(版本二)如果y=\frac{u}{v};那么\frac{dy}{dx}=\frac{v\frac{du}{dx}-u\frac{dv}{dx}}{v^{2}}

【例】函数y=\frac{3x^{2}+1}{2x^{8}-7};求导数

           令:u=3x^{2}+1                            \frac{du}{dx}=6x

                   v=2x^{8}-7                            \frac{dv}{dx}=16x^{7}

           根据商法则:\frac{dy}{dx}=\frac{v\frac{du}{dx}-u\frac{dv}{dx}}{v^{2}}

                                   =\frac{(2x^{8}-7)(6x)-(3x^{2}+1)(16x^{7})}{(2x^{8}-7)^{2}}

通过链式求导法则求复合函数的导数

链式求导法则(版本一);如果h(x)=f(g(x));那么h'(x)=f'(g(x))g'(x)

 【例】函数h(x)=(x^{2}+1)^{99};求导数

           令:g(x)=x^{2}+1                                    g'(x)=2x

                   f(X)=X^{99}                                       f'(X)=99X^{98}

           根据链式法则:h'(x)=f'(g(x))g'(x)

                                             =99(x^{2}+1)^{98}(2x)

                                              =198x(x^{2}+1)^{98}

链式求导法则(版本二)如果yu的函数,并且ux的函数,那么\frac{dy}{dx}=\frac{dy}{du}\frac{du}{dx}

【例】令:y=u^{99}                                       \frac{dy}{du}=99u^{98}  

                  u=x^{2}+1                                  \frac{du}{dx}=2x      

   根据链式法则:\frac{dy}{dx}=\frac{dy}{du}\frac{du}{dx}

                                =99u^{98}\times 2x

                               =99(x^{2}+1)^{98}\times 2x

                               =198x(x^{2}+1)^{98}                 

求切线方程

假如有一条曲线y=f(x)和曲线上一个特定的点(x,f(x)),那么过该点的切线的斜率是f'(x),并且此切线通过点(x,f(x)),现在,就可以使用点斜式来求切线方程了,具体细节如下:

  1. 求斜率,通过求导函数并带入给定的x值;
  2. 求直线上的一点,通过将给定的x值代入原始函数本身得到y坐标,将坐标写在一起并称其为点(x_{0},y_{0})
  3. 使用点斜式y-y_{0}=m(x-x_{0})

【例】令y=(x^{3}-7)^{50};该函数在x=2处的切线方程是什么

       分析:采用链式求导法则:

                                      令u=x^{3}-7                      u'=3x^{2};

                                          y=u^{50}                            y'=50u^{49}

          \frac{dy}{dx}=\frac{dy}{du}\frac{du}{dx}

                =50u^{49}\times 3x^{2}

                =50\times (x^{3}-7)\times 3x^{2}

                =50 \times (2^{3}-7) \times (3\times 2^{2})

                =  600      斜率为600

          第二步:将x=2带入表达式,求出y的值  y=(x^{3}-7)^{50}=(2^{3}-7)^{50}=1^{50}=1;所以切线通过点(2,1)

          第三步:切线方程(y-1)=600(x-1);即:y=600x-1199

分段函数求导

【例一】 f(x)\left\{\begin{matrix} 1 & x\leq 0\\ x^{2}+1& x> 0 \end{matrix}\right.

上面的函数是否可导?

从上面的表达式可以看出该函数在左侧和右侧都是可导数的,问题是在x=0的时候两段接口处发生了什么

可导性有两个前提条件:1、连续性  2、左右两边的导数值相等

校验连续性:

左极限:\lim_{x\rightarrow 0^{-}}f(x)=\lim_{x\rightarrow 0^{-}}(1)=1

右极限:\lim_{x\rightarrow 0^{-}}f(x)=\lim_{x\rightarrow 0^{-}}(x^{2}+1)=0^{2}+1=1

因此,左极限等于右极限,这就意味着双侧极限存在并且等于1。

校验导数值:(左侧:f(x)=1;导数f'(x)=0;右侧:f(x)=(x^{2}+1);导数f'(x)=2x

左导数值:\lim_{x\rightarrow 0^{-}}f'(x)=\lim_{x\rightarrow 0^{-}}(0)=0

右导数值:\lim_{x\rightarrow 0^{-}}f(x)=\lim_{x\rightarrow 0^{-}}(2x)=0

因为分段函数的左导数和右导数相等,所以该函数可导

【例二】g(x)=\left\{\begin{matrix} |x^{2}-4| & x\leq 1\\ -2x+5 &x> 1 \end{matrix}\right.

注意:加入了绝对值使我们的方程变得更加复杂,实现我去掉绝对值符号

|x^{2}-4|\left\{\begin{matrix} x^{2}-4 & x^{2}-4>0 \\ -(x^{2}-4)&x^{2}-4<0 \end{matrix}\right.    简化    |x^{2}-4|\left\{\begin{matrix} x^{2}-4 & x\geq 2 \parallel x\leq -2\\ -x^{2}+4&-2<x<2 \end{matrix}\right.

合并上面两个方程

g(x)=\left\{\begin{matrix} x^{2}-4 &x\leq -2 \\ -x^{2}+4 & -2<x\leq 1\\ -2x+5 & x>1 \end{matrix}\right.

【分析】从上面的函数可以看出每个分段都是处处可导的,问题是每个分段的连接点左右两边有什么问题,是否可导

校验连续性:

左极限:\lim_{x\rightarrow (-2)^{-}}g(x)=\lim_{x\rightarrow (-2)^{-}}x^{2}-4=(-2)^{2}-4=0

右极限:\lim_{x\rightarrow (-2)^{-}}g(x)=\lim_{x\rightarrow (-2)^{-}}-x^{2}+4=-(-2)^{2}+4=0

由于两个极限相等,因此g在x=-2上连续

校验导数:函数g(x)=x^{2}-4的导数g'(x)=2x      函数g(x)=-x^{2}+4的导数g'(x)=-2x

左导数:\lim_{x\rightarrow (-2)^{-}}g'(x)=\lim_{x\rightarrow (-2)^{-}}2x=2(-2)=-4

右导数:\lim_{x\rightarrow (-2)^{+}}g'(x)=\lim_{x\rightarrow (-2)^{+}}-2x=-2(-2)=4

左导数和右导数不相等,故函数g在x=-2上不可导

在另外一个连接点x=1上又如何?重复之前的步骤

左连续:\lim_{x\rightarrow (1)^{-}}g(x)=\lim_{x\rightarrow (1)^{-}}-x^{2}+4=-(1)^{2}+4=3

右连续:\lim_{x\rightarrow (1)^{+}}g(x)=\lim_{x\rightarrow (1)^{+}}-2x+5=-2(1)+5=3

左右极限相等,因此g在x=1上连续。

验证左右极限: 函数g(x)=-x^{2}+4的导数g'(x)=-2x 函数g(x)=-2x+5的导数g'(x)=-2

左导数:\lim_{x\rightarrow (1)^{-}}g'(x)=\lim_{x\rightarrow (1)^{-}}-2x=-2(1)=-2

右导数:\lim_{x\rightarrow (1)^{+}}g'(x)=\lim_{x\rightarrow (1)^{+}}-2=-2

由于左导数和右导数相等,因此函数g在x=1上可导

 

所以除了在(-2,0)处不可导,其他处处可导

 

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值