【人工智能学习笔记】 1.1数学分析(一) -3.实数系的连续性与数列极限

本文介绍了实数系的连续性和数列极限的概念,包括封闭、上确界与下确界、确界存在定理、数列定义、数列极限的定义及其性质。通过举例说明如何利用数列极限来逼近圆的面积,并探讨了收敛数列的有界性、唯一性和保号性。此外,还涉及了数列收敛性的判别准则及极限的四则运算。
摘要由CSDN通过智能技术生成

声明:部分内容来自于慕课,公开课等的课件,仅供学习使用。如有问题,请联系删除。

部分内容来自电子科技大学,北京大学,清华大学,北航,复旦大学等的教材和课件

实数系的连续性


1. 封闭

   封闭的概念: 若有一个集合中的任意两个元素进行了某种运算后,所得的结果仍属于这个集合,我们称该集合对这种运算是封闭的.


2. 上确界和下确界

2.1 上确界

   设U的最小数为 β \beta β ,就称 β \beta β 为数集 S S S上确界,即最小上界,记为

    β = s u p S \Large\beta= sup S β=supS

  上确界有以下两个性质:
   1. β \beta β是数集 S S S 的上界; ∀ x ∈ S , 有 x ≤ β ; \forall x \in S,有 x \leq \beta; xS,xβ;
   2. 任何小于 β \beta β 的数不是数集 S S S 的上界: ∀ ϵ > 0 , ∃ x ∈ S , 使 得 x > β − ϵ ; \forall \epsilon >0, \exists x \in S,使得x>\beta -\epsilon; ϵ>0,xS,使x>βϵ;

2.2 下确界

   设L的最大数为 α \alpha α ,就称 α \alpha α 为数集 S S S下确界,即最小下界,记为

    α = i n f S \Large\alpha= inf S α=infS

  上确界有以下两个性质:
   1. α \alpha α是数集 S S S 的下界; ∀ x ∈ S , 有 x ≥ α ; \forall x \in S,有 x \geq \alpha; xS,xα;
   2. 任何小于 α \alpha α 的数不是数集 S S S 的下界: ∀ ϵ > 0 , ∃ x ∈ S , 使 得 x < α + ϵ ; \forall \epsilon >0, \exists x \in S,使得x<\alpha +\epsilon; ϵ>0,xS,使x<α+ϵ;

2.3 确界存在定理:

    非空有上界的数集必有上确界,非空有下界的数集必有下确界。

数列极限

概念引入:求圆的面积

在这里插入图片描述

A 1 , A 2 , A 3 , . . . , A n , . . . ⇒ A_1,A_2,A_3,...,A_n,...\Rightarrow A1,A2,A3,...,An,...无穷次逐步逼近过程


3.数列定义

   按自然数编号依次排列的一列数 x 1 , x 2 , x 3 , . . . , x n , . . . x_1,x_2,x_3,...,x_n,... x1,x2,x3,...,xn,... 称为无穷数列,简称数列。记作{ x n x_n xn}


4.数列极限的定义

   给定数列{ x n x_n xn},a为实常数,如果对于 ∀ ε > 0 \forall \varepsilon >0 ε>0,都存在一个正整数N,使 n > N n>N n>N时,成立 ∣ x n − a ∣ < ε |x_n-a|<\varepsilon xna<ε
   则称当 n n n趋向于无穷大时,数列{ x n x_n xn}以 a a a为极限(或称数列{ x n x_n xn}收敛于 a a a)。记作:

   lim ⁡ x → ∞ x n = a \Large\color{red}\lim_{x\rightarrow\infty}x_n=a limxxn=a

   如果数列没有极限,就称数列是发散的。

注意

   (1)定义中的 ε \varepsilon ε刻画了 x n x_n xn与a的逼近程度,定义中的 ε \varepsilon ε可以限制 ε ≤ a \varepsilon \leq a εa.可以记作成N( ε \varepsilon ε),但不能看作是 ε \varepsilon ε的函数,因为 ε \varepsilon ε确定时,N可以不唯一。

   (2)定义中的N和 ε \varepsilon ε有关,仅要求存在,一般 ε \varepsilon ε越小,N越大。

4.1 逻辑符号表述

ε \varepsilon ε -N 定义: lim ⁡ x → ∞ x n = a ⇔ \lim_{x\rightarrow\infty}x_n=a \Leftrightarrow limxxn=a
∀ ε > 0 , ∃ N > 0 , \forall \varepsilon>0,\exists N>0, ε>0,N>0, 使n>N时,恒有 ∣ x n − a ∣ < ε |x_n-a|<\varepsilon xna<ε.
在这里插入图片描述


5.收敛数列的性质

5.1 有界性

   定理1:收敛的数列必定有界

5.2 唯一性

   定理2:每个收敛的数列只有一个极限

5.3 保号性

   (1)设 lim ⁡ x → ∞ x n = a > 0 \lim_{x\rightarrow\infty}x_n=a >0 limxxn=a>0 ∃ N > 0 , \exists N>0, N>0, n > N n>N n>N时有 x n > 0 x_n>0 xn>0.

   (2)设 lim ⁡ x → ∞ x n = a < 0 \lim_{x\rightarrow\infty}x_n=a <0 limxxn=a<0 ∃ N > 0 , \exists N>0, N>0, n > N n>N n>N时有 x n < 0 x_n<0 xn<0.


6.数列收敛性的判别准则

  单调有界,必有极限


7.数列极限的四则运算

   设 lim ⁡ x → ∞ x n = a , lim ⁡ n → ∞ y n = b , \lim_{x\rightarrow \infty} x_n=a,\lim_{n\rightarrow \infty}y_n =b, limxxn=a,limnyn=b,

   1. lim ⁡ x → ∞ ( α x n + β y n ) = α a + β b ; \Large\lim_{x\rightarrow \infty}(\alpha x_n +\beta y_n)=\alpha a +\beta b; limx(αxn+βyn)=αa+βb; ( α , β \alpha,\beta α,β 是常数)
   2. lim ⁡ x → ∞ ( x n y n ) = a b ; \Large\lim_{x\rightarrow \infty}(x_n y_n)=ab; limx(xnyn)=ab;
   3. lim ⁡ x → ∞ ( x n y n ) = a b \Large\lim_{x\rightarrow \infty}(\frac{x_n}{y_n})=\frac{a}{b} limx(ynxn)=ba( α , β \alpha,\beta α,β 是常数)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值