S9.3再论实数系-实数完备性

S3、实数完备性

  1. 柯西收敛原理:在实数系中,数列{xn}有极限存在的充分必要条件为: ∀ ϵ > 0 , ∃ N ∈ N + \forall \epsilon>0,\exist N\in N_+ ϵ>0,NN+ n > N , m > N n>N,m>N n>N,m>N时有 ∣ x n − x m ∣ < ϵ |x_n-x_m|<\epsilon xnxm<ϵ

    证明:

    • 必要性证明:即{xn}是一个收敛数列,不妨令其收敛于a
      ∀ ϵ > 0 , ∃ N ∈ N + \forall \epsilon>0,\exist N\in N_+ ϵ>0,NN+ n > N n>N n>N时有 ∣ x n − a ∣ < ϵ 2 |x_n-a|<\frac{\epsilon}{2} xna<2ϵ同理当 m > N m>N m>N ∣ x m − a ∣ < ϵ 2 |x_m-a|<\frac{\epsilon}{2} xma<2ϵ ∣ x n − x m ∣ < ∣ x n − a ∣ + ∣ x m − a ∣ < ϵ |x_n-x_m|<|x_n-a|+|x_m-a|<\epsilon xnxm<xna+xma<ϵ必要性证毕
    • 充分性证明:对于{xn}数列由其性质得 ∀ ϵ > 0 , ∃ N ∈ N + \forall \epsilon>0,\exist N\in N_+ ϵ>0,NN+ n > N n>N n>N时由 ∣ x n − x N + 1 ∣ < ϵ |x_n-x_{N+1}|<\epsilon xnxN+1<ϵ 不妨令 ϵ = 1 \epsilon=1 ϵ=1 ∣ x n ∣ < ∣ x N + 1 ∣ + 1 |x_n|<|x_{N+1}|+1 xn<xN+1+1则取 M = m a x { ∣ x 1 ∣ , ∣ x 2 ∣ , … , ∣ x N ∣ , ∣ x N + 1 ∣ } M=max\{|x_1|,|x_2|,\dots,|x_N|,|x_{N+1}|\} M=max{x1,x2,,xN,xN+1} ∣ x n ∣ < M |x_n|<M xn<M即{xn}有界则由致密性定理得其一定存在一收敛子数列 { x n k } \{x_{n_k}\} {xnk}不妨令其极限为a则易得 ∀ ϵ > 0 , ∃ N 1 ∈ N + \forall \epsilon>0,\exist N_1\in N_+ ϵ>0,N1N+ n > N 1 , m > N 1 , s . t . ∣ x n − x m ∣ < ϵ 2 n>N_1,m>N_1,s.t.|x_n-x_m|<\frac{\epsilon}{2} n>N1,m>N1,s.t.xnxm<2ϵ
      另一方面,存在 k 0 k_0 k0,只要 n k > n k 0 n_k>n_{k_0} nk>nk0 ∣ x n k − a ∣ < ϵ 2 |x_{n_k}-a|<\frac{\epsilon}{2} xnka<2ϵ N = m a x { N 1 , n k 0 } N=max\{N_1,n_{k_0}\} N=max{N1,nk0}只要 n > N n>N n>N,选取 n k > N , n_k>N, nk>N,则有
      ∣ x n − a ∣ ≤ ∣ x n − x n k ∣ + ∣ x n k − a ∣ < ϵ |x_n-a|\le|x_n-x_{n_k}|+|x_{n_k}-a|<\epsilon xnaxnxnk+xnka<ϵ充分性证明完毕⚡️
  2. 基本列(柯西列):在数系S系中,如果数列{xn}满足下列性质:任给 ϵ > 0 \epsilon>0 ϵ>0存在N,使得只要n>N,m>N,有 ∣ x n − x m ∣ < ϵ |x_n-x_m|<\epsilon xnxm<ϵ则称{xn}为S的基本列,或称为柯西列

  3. 柯西收敛原理:在实数系R中,数列{xn}有极限存在的充分必要条件是{xn}为R中的基本列

  4. 完备性:如果数系S中的每个基本列都在S中有极限存在,则该数系S具有完备性(即具有完备性的数系即对极限运算封闭)

  5. 定理:实数系R是完备的(易证)

  6. 连续变量的柯西收敛定理:极限 lim ⁡ x → a f ( x ) = b \lim\limits_{x\to a}f(x)=b xalimf(x)=b的充要条件为 ∀ ϵ > 0 , ∃ δ > 0 , \forall \epsilon>0,\exist\delta>0, ϵ>0,δ>0, ∣ x 1 − a ∣ < δ , ∣ x 2 − a ∣ < δ , |x_1-a|<\delta,|x_2-a|<\delta, x1a<δ,x2a<δ,就有 ∣ f ( x 1 ) − f ( x 2 ) ∣ < ϵ |f(x_1)-f(x_2)|<\epsilon f(x1)f(x2)<ϵ

    证明:在这里插入图片描述

  7. 收敛数列的本质:数列中足够远的两项(n足够大的两项)距离足够小(这是柯西收敛原理所揭示的)

  8. 柯西收敛的等价描述: ∀ ϵ > 0 , ∃ N ∈ N + \forall \epsilon>0,\exist N\in N_+ ϵ>0,NN+ n > N n>N n>N ∀ \forall 自然数 p p p ∣ x n + p − x n ∣ < ϵ |x_{n+p}-x_n|<\epsilon xn+pxn<ϵ

  9. 发散的描述: ∃ ϵ > 0 , ∀ N ∃ n 0 , m 0 > N , s . t . ∣ x n 0 − x m 0 ∣ ≥ 0 \exist\epsilon>0,\forall N\exist n_0,m_0>N,s.t.|x_{n_0}-x_{m_0}|\ge0 ϵ>0,Nn0,m0>N,s.t.xn0xm00

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

哈哈19

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值