销量预测solution

这个比赛当时是在jupyter notebook上编程的,这篇博客是之前自己整理的代码和流程记录。

但是很可惜,notebook转markdown显示效果很不好,下面给出目录和代码。

在这里插入图片描述


# coding: utf-8

# # 数据分析

# In[59]:


# 一般一起用才会管用,否则可能会显示混乱
get_ipython().run_line_magic('config', "ZMQInteractiveShell.ast_node_interactivity='all'")
get_ipython().run_line_magic('pprint', '')


# In[60]:


# coding: utf-8
 
# 开发环境:windows10, Anacoda3.5 , jupyter notebook ,python3.6 
# 库: numpy,pandas,matplotlib,seaborn,xgboost,time
# 运行时间:CPU: i7-6700HQ,约8h
 
# 导入所需要的库
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
get_ipython().run_line_magic('matplotlib', 'inline')
import xgboost as xgb
from time import time

import warnings
warnings.filterwarnings("ignore")


# ## 读取数据

# In[61]:


# 读取数据
train = pd.read_csv('train.csv', parse_dates=[2])
test = pd.read_csv('test.csv', parse_dates=[3])
store = pd.read_csv('store.csv')


# ##  查看数据基本信息

# ### 读取各csv的前几行和尾几行查看

# In[62]:


# 查看训练集、测试集和店铺信息
display(train.head().append(train.tail()), test.head().append(test.tail()), store.head().append(store.tail()))


# ### info() 快速查看数据的描述

# In[63]:


# info() 可以快速查看数据的描述,特别是总行数,每个属性的类型(数值型/非数值型)和非空值(或缺失值)的数量
train.info()  # 可以看到有缺失值(后面需要处理)


# In[64]:


test.info()  


# In[65]:


store.info()


# ### describe() 描述了数值属性的概括

# In[66]:


# describe() 描述了数值属性的概括
train.describe()  # 注意:空值被忽略了(不计数)


# ### 对类别型的Series执行value_counts()

# 我们发现`StateHoliday`为非数值型数据,因为是从csv中读取的,所以肯定是文本类型。这是一个表示类别的属性,可以使用 `value_counts` 的方法查看该项中有哪些类别,以及每种类别的数量。

# In[67]:


# 我们发现StateHoliday为非数值型数据,因为是从csv中读取的,所以肯定是文本类型。这是一个表示类别的属性,
# 可以使用 value_counts() 的方法查看该项中有哪些类别,以及每种类别的数量。
train["StateHoliday"].value_counts()


# ### 还有一个快速了解数值属性的方式(画饼状图)
# 但是这个比赛,画柱状图好像并不是很合适。

# In[68]:


get_ipython().run_line_magic('matplotlib', 'inline')
import matplotlib.pyplot as plt
train.hist(bins=50, figsize=(20,15))
plt.show()


# ## 缺失数据分析
# 需要逐条分析上面有缺失值的属性,以此决定处理缺失值的方法。

# ### 查看数据缺失情况

# In[69]:


display(train.isnull().sum(),test.isnull().sum(),store.isnull().sum())


# ### 训练集缺失数据

# 训练集没有缺失数据,不用处理

# In[70]:


display(train.isnull().sum(),test.isnull().sum(),store.isnull().sum())


# ### 测试集缺失数据

# In[71]:


# 测试缺失数据 Open    11条
test[pd.isnull(test.Open)]


# 缺失数据都来自于622店铺,从周1到周6而且没有假期,所以我们认为这个店铺的状态应该是正常营业的。(后面可填充1)

# ### 店铺集缺失数据

# In[72]:


# 店铺集缺失数据 CompetitionDistance   3条
store[pd.isnull(store.CompetitionDistance)]


# 这个缺失信息啥也分析不出来,看不出为嘛缺失

# In[73]:


# 店铺集缺失数据 CompetitionOpenSinceMonth / CompetitionOpenSinceYear   均为354条
store[pd.isnull(store.CompetitionOpenSinceMonth)].head(10)


# 根据上面的信息,`CompetitionOpenSinceMont` 和 `CompetitionOpenSinceYear`,缺失数量是一样的,也是同时缺失的。暂时分析不出什么有用信息

# **店铺竞争数据缺失的原因不明,且数量比较多,我们可以用中值或者0来填充,后续的实验发现以0填充的效果更好**

# In[74]:


# 查看是否Promo2系列的缺失是否是因为没有参加促销(Promo2SinceWeek,Promo2SinceYear,PromoInterval)  均为544条
NoPW = store[pd.isnull(store.Promo2SinceWeek)]
NoPW[NoPW.Promo2 != 0].shape


# 由此可知假设成立:Promo2系列的缺失确实是因为没有参加促销。
# 
# **店铺促销信息的缺失是因为没有参加促销活动,所以我们以0填充**

# ## 看各属性随时间的变化趋势

# ### 分析店铺销量随时间的变化(折线图)

# In[75]:


strain = train[train.Sales>0]
# strain.head()
# strain.head(10000).loc[strain['Store']==1 ,['Date','Sales']]
strain.loc[strain['Store']==1 ,['Date','Sales']].plot(x='Date', y='Sales', title='Store_1', figsize=(16 ,4))


# ### 分析店铺6-9月份的销量变化

# In[76]:


strain = train[train.Sales>0]
strain.loc[strain['Store']==1 ,['Date','Sales']].plot(x='Date',y='Sales',title='Store_1',figsize=(8,2),xlim=['2014-6-1','2014-7-31'])
strain.loc[strain['Store']==1 ,['Date','Sales']].plot(x='Date',y='Sales',title='Store_1',figsize=(8,2),xlim=['2014-8-1','2014-9-30'])


# - 从上图的分析中,我们可以看到店铺的销售额是有周期性变化的,一年之中11,12月份销量要高于其他月份,可能有季节因素或者促销等原因.
# - 此外从对2014年6月-9月份的销量来看,6,7月份的销售趋势与8,9月份类似,因为我们需要预测的6周在2015年8,9月份(8.1—9.17),因此我们可以把2015年6,7月份最近的6周数据作为hold-out数据集,用于模型的优化和验证。

# # 数据预处理

# ## 缺失值处理

# ### 测试集缺失值处理

# In[77]:


#我们将test中的open数据补为1,即营业状态
test.fillna(1, inplace=True)


# ### 店铺集缺失值处理

# In[78]:


# store['CompetitionDistance'].fillna(store['CompetitionDistance'].median(), inplace = True)
# store['CompetitionOpenScinceYear'].fillna(store['CompetitionDistance'].median(), inplace = True)
# store['CompetitionOPenScinceMonth'].fillna(store['CompetitionDistance'].median(), inplace = True)

# store中的缺失数据大多与竞争对手和促销有关,在实验中我们发现竞争对手信息的中值填充效果并不好,所以这里统一采用0填充
store.fillna(0, inplace=True)


# ### 查看是否还存在缺失值

# In[79]:


display(train.isnull().sum(),test.isnull().sum(),store.isnull().sum())


# so....缺失值处理完成

# ## 合并表单

# In[80]:


train = pd.merge(train, store, on='Store')
test = pd.merge(test, store, on='Store')


# ## 切分测试集

# In[81]:


# 留出最近的6周数据作为hold_out数据集进行测试
train = train.sort_values(['Date'], ascending = False)
ho_test = train[: 6*7*1115]
ho_train = train[6*7*1115: ]


# ## 去掉销量为0的数据(题目要求)

# In[82]:


# 因为销售额为0的记录不计入评分,所以只采用店铺为开,且销售额大于0的数据进行训练
ho_test = ho_test[ho_test["Open"] != 0]
ho_test = ho_test[ho_test["Sales"] > 0]
ho_train = ho_train[ho_train["Open"] != 0]
ho_train = ho_train[ho_train["Sales"] > 0]


# # 特征工程

# ## 定义特征处理函数(特征处理与转化)

# In[83]:


def features_create(data):
    
    # 将存在其他字符表示分类的特征转化为数字
    mappings = {'0':0, 'a':1, 'b':2, 'c':3, 'd':4}
    data.StoreType.replace(mappings, inplace=True)
    data.Assortment.replace(mappings, inplace=True)
    data.StateHoliday.replace(mappings, inplace=True)
    
    #将时间特征进行拆分和转化,并加入'WeekOfYear'特征
    data['Year'] = data.Date.dt.year
    data['Month'] = data.Date.dt.month
    data['Day'] = data.Date.dt.day
    data['DayOfWeek'] = data.Date.dt.dayofweek
    data['WeekOfYear'] = data.Date.dt.weekofyear
    
    
    # 新增'CompetitionOpen'和'PromoOpen'特征,计算某天某店铺的竞争对手已营业时间和店铺已促销时间,用月为单位表示
    data['CompetitionOpen'] = 12 * (data.Year - data.CompetitionOpenSinceYear) + (data.Month - data.CompetitionOpenSinceMonth)
    data['PromoOpen'] = 12 * (data.Year - data.Promo2SinceYear) + (data.WeekOfYear - data.Promo2SinceWeek) / 4.0
    data['CompetitionOpen'] = data.CompetitionOpen.apply(lambda x: x if x > 0 else 0)        
    data['PromoOpen'] = data.PromoOpen.apply(lambda x: x if x > 0 else 0)
    
    
    # 将'PromoInterval'特征转化为'IsPromoMonth'特征,表示某天某店铺是否处于促销月,1表示是,0表示否
    month2str = {1:'Jan', 2:'Feb', 3:'Mar', 4:'Apr', 5:'May', 6:'Jun', 7:'Jul', 8:'Aug', 9:'Sept', 10:'Oct', 11:'Nov', 12:'Dec'}
    data['monthStr'] = data.Month.map(month2str)
    data.loc[data.PromoInterval == 0, 'PromoInterval'] = ''
    data['IsPromoMonth'] = 0
    for interval in data.PromoInterval.unique():
        if interval != '':
            for month in interval.split(','):
                data.loc[(data.monthStr == month) & (data.PromoInterval == interval), 'IsPromoMonth'] = 1
 
    return data


# ## 对训练,保留以及测试数据集进行特征转化

# In[84]:


features_create(ho_train)
features_create(ho_test)
features_create(test)
print('Features creation finished')


# ## 删掉训练和保留数据集中不需要的特征

# In[85]:


ho_train.drop(['Date','Customers','Open','PromoInterval','monthStr'],axis=1,inplace =True)
ho_test.drop(['Date','Customers','Open','PromoInterval','monthStr'],axis=1,inplace =True)


# ## 分析训练数据集中特征相关性以及特征与'Sales'标签的相关性

# In[86]:


plt.subplots(figsize=(24,20))
sns.heatmap(ho_train.corr(), annot=True, vmin=-0.1, vmax=0.1, center=0)


# ## 拆分特征与标签,并将标签取对数处理

# In[87]:


# log1p 平滑处理
ho_xtrain = ho_train.drop(['Sales'],axis=1 )
ho_ytrain = np.log1p(ho_train.Sales)
ho_xtest = ho_test.drop(['Sales'],axis=1 )
ho_ytest = np.log1p(ho_test.Sales)


# ## 删掉测试集中对应的特征与训练集保持一致

# In[88]:


xtest =test.drop(['Id','Date','Open','PromoInterval','monthStr'],axis = 1)


# # 定义评价函数

# In[89]:


#定义评价函数rmspe
def rmspe(y, yhat):
    return np.sqrt(np.mean((yhat/y-1) ** 2))
 
def rmspe_xg(yhat, y):
    y = np.expm1(y.get_label())
    yhat = np.expm1(yhat)
    return "rmspe", rmspe(y,yhat)


# # 模型构建

# ## 参数设定

# In[95]:


#参数设定
params = {"objective": "reg:linear",
          "booster" : "gbtree",
          "eta": 0.03,
          "max_depth": 10,
          "subsample": 0.9,
          "colsample_bytree": 0.7,
          "silent": 1,
          "seed": 10
          }
num_boost_round = 2800 # 原来是6000
 
 
dtrain = xgb.DMatrix(ho_xtrain, ho_ytrain)
dvalid = xgb.DMatrix(ho_xtest, ho_ytest)
watchlist = [(dtrain, 'train'), (dvalid, 'eval')]


# ## 模型训练

# In[96]:


print("Train a XGBoost model")
start = time()
gbm = xgb.train(params, dtrain, num_boost_round, evals=watchlist, early_stopping_rounds=100, feval=rmspe_xg, verbose_eval=True)
end = time()
print('Training time is {:2f} s.'.format(end-start))
 
#采用保留数据集进行检测
print("validating:")
ho_xtest.sort_index(inplace=True) 
ho_ytest.sort_index(inplace=True) 
yhat = gbm.predict(xgb.DMatrix(ho_xtest))
error = rmspe(np.expm1(ho_ytest), np.expm1(yhat))
 
print('RMSPE: {:.6f}'.format(error))


# # 结果分析

# ## 构建保留数据集预测结果

# In[97]:


res = pd.DataFrame(data = ho_ytest)
res['Prediction'] = yhat
res = pd.merge(ho_xtest, res, left_index= True, right_index=True)
res['Ratio'] = res.Prediction/res.Sales
res['Error'] =abs(res.Ratio-1)
res['Weight'] = res.Sales/res.Prediction
res.head()


# ## 分析保留数据集中任意三个店铺的预测结果

# In[98]:


col_1 = ['Sales','Prediction']
col_2 = ['Ratio']
L = np.random.randint( low=1, high = 1115, size = 3 ) 
print('Mean Ratio of predition and real sales data is {}: store all'.format(res.Ratio.mean()))
for i in L:
    s1 = pd.DataFrame(res[res['Store'] == i], columns = col_1)
    s2 = pd.DataFrame(res[res['Store'] == i], columns = col_2)
    s1.plot(title = 'Comparation of predition and real sales data: store {}'.format(i), figsize=(12,4))
    s2.plot(title = 'Ratio of predition and real sales data: store {}'.format(i), figsize=(12,4))
    print('Mean Ratio of predition and real sales data is {}: store {}'.format(s2.Ratio.mean(), i))


# ## 分析偏差最大的10个预测结果

# In[99]:


res.sort_values(['Error'],ascending=False,inplace= True)
res[:10]


# 从分析结果来看,我们的初始模型已经可以比较好的预测hold-out数据集的销售趋势,但是相对真实值,我们的模型的预测值整体要偏高一些。从对偏差数据分析来看,偏差最大的3个数据也是明显偏高。因此我们可以以hold-out数据集为标准对模型进行偏差校正。

# # 模型优化

# ## 偏差整体校正优化

# In[100]:


print("weight correction")
W=[(0.990+(i/1000)) for i in range(20)]
S =[]
for w in W:
    error = rmspe(np.expm1(ho_ytest), np.expm1(yhat*w))
    print('RMSPE for {:.3f}: {:.6f}'.format(w, error))
    S.append(error)
Score = pd.Series(S, index=W)
Score.plot()
BS = Score[Score.values == Score.values.min()]
print ('Best weight for Score:{}'.format(BS))


# - 当校正系数为0.995时,hold-out集的RMSPE得分最低:0.118889,相对于初始模型 0.125453得分有很大的提升。(这是迭代6000轮的结果)
# - 因为每个店铺都有自己的特点,而我们设计的模型对不同的店铺偏差并不完全相同,所以我们需要根据不同的店铺进行一个细致的校正。

# ## 细致校验

# ### 分组计算校正系数

# 以不同的店铺分组进行细致校正,每个店铺分别计算可以取得最佳RMSPE得分的校正系数

# In[101]:


L=range(1115)
W_ho=[]
W_test=[]
for i in L:
    s1 = pd.DataFrame(res[res['Store']==i+1],columns = col_1)
    s2 = pd.DataFrame(xtest[xtest['Store']==i+1])
    W1=[(0.990+(i/1000)) for i in range(20)]
    S =[]
    for w in W1:
        error = rmspe(np.expm1(s1.Sales), np.expm1(s1.Prediction*w))
        S.append(error)
    Score = pd.Series(S,index=W1)
    BS = Score[Score.values == Score.values.min()]
    a=np.array(BS.index.values)
    b_ho=a.repeat(len(s1))
    b_test=a.repeat(len(s2))
    W_ho.extend(b_ho.tolist())
    W_test.extend(b_test.tolist())


# ### 计算校正后整体数据的RMSPE得分:

# In[111]:


yhat_new = yhat*W_ho
error = rmspe(np.expm1(ho_ytest), np.expm1(yhat_new))
print ('RMSPE for weight corretion {:6f}'.format(error))


# 细致校正后的hold-out集的得分为0.112010,相对于整体校正的0.118889的得分又有不小的提高

# ### 用初始和校正后的模型对训练数据集进行预测

# In[112]:


print("Make predictions on the test set")
dtest = xgb.DMatrix(xtest)
test_probs = gbm.predict(dtest)


# #### 初始模型

# In[113]:


result = pd.DataFrame({"Id": test['Id'], 'Sales': np.expm1(test_probs)})
result.to_csv("./top1_pre_result/Rossmann_submission_1.csv", index=False)


# #### 整体校正模型

# In[114]:


result = pd.DataFrame({"Id": test['Id'], 'Sales': np.expm1(test_probs*0.995)})
result.to_csv("./top1_pre_result/Rossmann_submission_2.csv", index=False)


# #### 细致校正模型

# In[115]:


result = pd.DataFrame({"Id": test['Id'], 'Sales': np.expm1(test_probs*W_test)})
result.to_csv("./top1_pre_result/Rossmann_submission_3.csv", index=False)


# 然后我们用不同的seed训练10个模型,每个模型单独进行细致偏差校正后进行融合.

# ## 训练融合模型

# ### 训练10个xgb(耗时太大,略过)

# In[ ]:


print("Train an new ensemble XGBoost model")
start = time()
rounds = 10
preds_ho = np.zeros((len(ho_xtest.index), rounds))
preds_test = np.zeros((len(test.index), rounds))
B=[]
for r in range(rounds):
    print('round {}:'.format(r+1))
    
    params = {"objective": "reg:linear",
          "booster" : "gbtree",
          "eta": 0.03,
          "max_depth": 10,
          "subsample": 0.9,
          "colsample_bytree": 0.7,
          "silent": 1,
          "seed": r+1
          }
    num_boost_round = 6000
    gbm = xgb.train(params, dtrain, num_boost_round, evals=watchlist, 
                    early_stopping_rounds=100, feval=rmspe_xg, verbose_eval=True)
    
    yhat = gbm.predict(xgb.DMatrix(ho_xtest))
    
    L=range(1115)
    W_ho=[]
    W_test=[]
    for i in L:
        s1 = pd.DataFrame(res[res['Store']==i+1],columns = col_1)
        s2 = pd.DataFrame(xtest[xtest['Store']==i+1])
        W1=[(0.990+(i/1000)) for i in range(20)]
        S =[]
        for w in W1:
            error = rmspe(np.expm1(s1.Sales), np.expm1(s1.Prediction*w))
            S.append(error)
        Score = pd.Series(S,index=W1)
        BS = Score[Score.values == Score.values.min()]
        a=np.array(BS.index.values)
        b_ho=a.repeat(len(s1))
        b_test=a.repeat(len(s2))
        W_ho.extend(b_ho.tolist())
        W_test.extend(b_test.tolist())
    
 
    yhat_ho = yhat*W_ho
    yhat_test =gbm.predict(xgb.DMatrix(xtest))*W_test
    error = rmspe(np.expm1(ho_ytest), np.expm1(yhat_ho))
    B.append(error)
    preds_ho[:, r] = yhat_ho
    preds_test[:, r] = yhat_test
    print('round {} end'.format(r+1))
    
end = time()
time_elapsed = end-start
print('Training is end')
print('Training time is {} h.'.format(time_elapsed/3600))   


# ### 分析不同模型的相关性

# In[ ]:


preds = pd.DataFrame(preds_ho)
sns.pairplot(preds)


# 模型融合可以采用简单平均或者加权重的方法进行融合。从上图来看,这10个模型相关性很高,差别不大,所以权重融合我们只考虑训练中单独模型在hold-out模型中的得分情况分配权重。

# ### 模型融合在hold-out数据集上的表现

# #### 简单平均融合

# In[ ]:


print ('Validating')

bagged_ho_preds1 = preds_ho.mean(axis = 1)
error1 = rmspe(np.expm1(ho_ytest), np.expm1(bagged_ho_preds1))
print('RMSPE for mean: {:.6f}'.format(error1))


# #### 加权融合

# In[ ]:


R = range(10)   
Mw = [0.20,0.20,0.10,0.10,0.10,0.10,0.10,0.10,0.00,0.00] 
A = pd.DataFrame()
A['round']=R
A['best_score']=B
A.sort_values(['best_score'],inplace = True)
A['weight']=Mw
A.sort_values(['round'],inplace = True)
weight=np.array(A['weight'])
preds_ho_w=weight*preds_ho
bagged_ho_preds2 = preds_ho_w.sum(axis = 1)
error2 = rmspe(np.expm1(ho_ytest), np.expm1(bagged_ho_preds2))
print('RMSPE for weight: {:.6f}'.format(error2))


# 权重模型较均值模型有比较好的得分

# ### 用均值融合和加权融合后的模型对训练数据集进行预测

# In[ ]:


#均值融合
print("Make predictions on the test set")
bagged_preds = preds_test.mean(axis = 1)
result = pd.DataFrame({"Id": test['Id'], 'Sales': np.expm1(bagged_preds)})
result.to_csv("Rossmann_submission_4.csv", index=False)

#加权融合
bagged_preds = (preds_test*weight).sum(axis = 1)
result = pd.DataFrame({"Id": test['Id'], 'Sales': np.expm1(bagged_preds)})
result.to_csv("Rossmann_submission_5.csv", index=False)


# # 模型特征重要性及最佳模型结果分析

# ## 模型特征重要性

# In[116]:


xgb.plot_importance(gbm)


# - 从模型特征重要性分析,比较重要的特征有四类包括
#     1. 周期性特征'Day','DayOfWeek','WeekOfYear','Month'等,可见店铺的销售额与时间是息息相关的,尤其是周期较短的时间特征;
#     2. 店铺差异'Store'和'StoreTyp'特征,不同店铺的销售额存在特异性;
#     3. 短期促销(Promo)情况:'PromoOpen'和'Promo'特征,促销时间的长短与营业额相关性比较大;
#     4. 竞争对手相关特征包括:'CompetitionOpen',‘CompetitionDistance','CompetitionOpenSinceMoth'以及'CompetitionOpenScinceyear',竞争者的距离与营业年限对销售额有影响。
# - 作用不大的特征主要两类包括:
#     1. 假期特征:'SchoolHoliday'和'StateHoliday',假期对销售额影响不大,有可能是假期店铺大多不营业,对模型预测没有太大帮助。
#     2. 持续促销(Promo2)相关的特征:'Promo2','Prom2SinceYear'以及'Prom2SinceWeek'等特征,有可能持续的促销活动对短期的销售额影响有限。

# ## 采用新的权值融合模型构建保留数据集预测结果

# In[ ]:


res1 = pd.DataFrame(data = ho_ytest)
res1['Prediction']=bagged_ho_preds2
res1 = pd.merge(ho_xtest,res1, left_index= True, right_index=True)
res1['Ratio'] = res1.Prediction/res.Sales
res1['Error'] =abs(res1.Ratio-1)
res1.head()


# ## 分析偏差最大的10个预测结果与初始模型差异

# In[ ]:


res1.sort_values(['Error'],ascending=False,inplace= True)
res['Store_new'] = res1['Store']
res['Error_new'] = res1['Error']
res['Ratio_new'] = res1['Ratio']
col_3 = ['Store','Ratio','Error','Store_new','Ratio_new','Error_new']
com = pd.DataFrame(res,columns = col_3)
com[:10]


# 从新旧模型预测结果最大的几个偏差对比的情况来看,最终的融合模型在这几个预测值上大多有所提升,证明模型的校正和融合确实有效。

  • 3
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值