matlab中的矩阵点乘(.)和乘法()
- 矩阵的乘法
矩阵相乘行和列的关系必须满足:矩阵A*矩阵B,矩阵A的列数等于矩阵B的行数,方法是矩阵A每一行与矩阵B的对应列的数据相乘再相加,得到的值作为新的矩阵的数据。matlab代码如下:
A=[2,4;3,1;2,5];
A
B=[3,1,4;2,1,2];
B
C=A*B;
C
***注意:矩阵相乘不满足交换定理。***
- 矩阵的点乘
矩阵的点乘则必须满足:矩阵A点.*矩阵B,矩阵A和矩阵B的行数和列数必须相等,方法是对应每个元素相乘,相乘得到的最终结果为和矩阵A和矩阵B相同维度的矩阵。
A=[2,4;3,1;2,5];
A
B=[3,1;4,2;1,2];
B
C=A.*B;
C
D=B.*A;
D
注:矩阵的点乘满足交换律;
行向量可以看作是特殊的矩阵(1行N列的矩阵),列向量也可以看作特殊的矩阵(N行1列的矩阵)。
- 矩阵和行向量点乘
当矩阵和行向量(只有1行)点乘时,必须满足行向量的列数和矩阵的列数相等。
A=[2,3,5;1,2,6];
A
B=[4,1,1];
B
C=A.*B;
C
D=B.*A;
D
- 矩阵和列向量点乘
当矩阵和列向量(只有1列)点乘时,必须满足列向量的行数等于矩阵的行数。