质数定义
如果一个数为质数,则他只有他本身和1两个公因子(约数),否则为合数。
编写一个程序判断某个数是否为质数
假如需要判断的数据是N:
通常的思路是,从2开始整除N,看是否在[2,N-1]这个区间内,有能够整除N的数存在,如果存在,则表面N不是质数,否则表明N是质数。
程序实现如下:
#include<math.h>
#include<iostream>
using namespace std;
int main()
{
int N,i=2;
cin>>N;
for(i=2;i<N;i++)
{
if(N%i==0)
{
cout<<"false";
break;
}
if(i==N)
cout<<"true";
}
return 0;
}
上述思路可行,但是如果数据量很大的话,这个需要花费大量的时间,无法满足时间要求,这就需要使用到合数性质了。
合数性质
我们都知道,除1之外,任何正整数要么是质要么是合数,如果确定一个数是质数,那他就不可能是合数,同样,如果确定一个数不是合数,那么他一定是质数。所以可以通过判断一个数是不是合数,进而确定那个数是否是质数。
合数性质:如果一个数为合数,则该合数必然有一个公因子在(1~该数开平方根]之间,如果在这个区间内都找不到一个公因子,则该数必然是质数。这就是合数的重要性质。利用这个性质,我们可以通过修改上述程序来判断是否为质数。
证明如下:
合数有如下两个事实:
- 合数N=m*n;
- 合数N=(根号N)(根号N)
结论:
如果 根号N 大于m,则n必然小于 根号N,同理
如果