XGBoost调参指南

本文是一份XGBoost调参的实用指南,包括两种调参方法:按照max_depth, min_child_weight, colsample_bytree, eta顺序调整,以及防止过拟合的策略,如控制模型复杂度和增加训练随机性。此外,文章还介绍了XGBoost的主要参数类型和在sklearn接口中对应的参数名称。" 52190025,5569735,软件测试流程与测试职责详解,"['测试', '质量管理', '软件开发', '项目管理', '测试工程师']
摘要由CSDN通过智能技术生成

XGBoost调参指南

参考-官网

方法1

可按照max_depth, min_child_weight colsamplt_bytree,eta的顺序一个一个调,每次调的时候其他参数保持不变

方法2:防止过拟合

When you observe high training accuracy, but low tests accuracy, it is likely that you encounter overfitting problem.

There are in general two ways that you can control overfitting in xgboost

  • The first way is to directly control model complexity
    This include max_depth, min_child_weight and gamma
  • The second way is to add randomness to make training robust to noise
    This include subsample, colsample_bytree
    You can also reduce stepsize eta, but needs to remember to increase num_round when you do so.

XGBoost参数

参考1-官网 参考2-CSDN

XGBoost参数类型分为三种:
- general parameters/一般参数:决定使用哪种booster,可选gbtree、dart、gblinear
- booster parameters/提升器参数:不同的booster选取不同的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值