介绍一下xgb_XGBoost调参指南

本文详细介绍了XGBoost的优势,包括正则化、并行处理、灵活性、缺失值处理和剪枝等,并通过实例解析了XGBoost的主要参数,如eta、min_child_weight、max_depth等。提供了调参的一般步骤,包括确定学习速率、树参数调优、正则化参数调优等,并给出了调参示例。强调了参数调优对模型性能的重要性,并提醒读者注意特征工程、模型组合等其他提升模型表现的方法。
摘要由CSDN通过智能技术生成

简介

XGBoost算法现在已经成为很多数据工程师的重要武器。它是一种十分精致的算法,可以处理各种不规则的数据,常年在kaggle中大杀四方。

构造一个使用XGBoost的模型十分简单。但是,提高这个模型的表现就有些困难(至少我觉得十分纠结)。这个算法使用了好几个参数。所以为了提高模型的表现,参数的调整十分必要。在解决实际问题的时候,有些问题是很难回答的——你需要调整哪些参数?这些参数要调到什么值,才能达到理想的输出?

这篇文章最适合刚刚接触XGBoost的人阅读。在这篇文章中,我们会学到参数调优的技巧,以及XGboost相关的一些有用的知识。以及,我们会用Python在一个数据集上实践一下这个算法。

XGBoost(eXtreme Gradient Boosting)是Gradient Boosting算法的一个优化的版本。因为我在前一篇文章——基于Python的Gradient Boosting算法参数调整完全指南

,里面已经涵盖了Gradient Boosting算法的很多细节了。我强烈建议大家在读本篇文章之前,把那篇文章好好读一遍。它会帮助你对Boosting算法有一个宏观的理解,同时也会对GBM的参数调整有更好的体会。

内容列表

1、XGBoost 的优势

2、理解XGBoost的参数

3、调参实例

1、XGBoost 的优势

XGBoost算法可以给预测模型带来能力的提升。当我对它的表现有更多了解的时候,当我对它的高准确率背后的原理有更多了解的时候,我发现它具有很多优势:

1.1 正则化

标准GBM的实现没有像XGBoost这样的正则化步骤。正则化对减少过拟合也是有帮助的。

实际上,XGBoost以“正则化提升(regularized boosting)”技术而闻名。

1.2 并行处理

XGBoost可以实现并行处理,相比GBM有了速度的飞跃。

不过,众所周知,Boosting算法是顺序处理的,它怎么可能并行呢?每一课树的构造都依赖于前一棵树,那具体是什么让我们能用多核处理器去构造一个树呢?我希望你理解了这句话的意思。如果你希望了解更多,点击这个链接。

XGBoost 也支持Hadoop实现。

1.3 高度的灵活性

XGBoost 允许用户定义自定义优化目标和评价标准。

它对模型增加了一个全新的维度,所以我们的处理不会受到任何限制。

1.4 缺失值处理

XGBoost内置处理缺失值的规则。

用户需要提供一个和其它样本不同的值,然后把它作为一个参数传进去,以此来作为缺失值的取值。XGBoost在不同节点遇到缺失值时采用不同的处理方法,并且会学习未来遇到缺失值时的处理方法。

1.5 剪枝

当分裂时遇到一个负损失时,GBM会停止分裂。因此GBM实际上是一个贪心算法。

XGBoost会一直分裂到指定的最大深度(max_depth),然后回过头来剪枝。如果某个节点之后不再有正值,它会去除这个分裂。

这种做法的优点,当一个负损失(如-2)后面有个正损失(如+10)的时候,就显现出来了。GBM会在-2处停下来,因为它遇到了一个负值。但是XGBoost会继续分裂,然后发现这两个分裂综合起来会得到+8,因此会保留这两个分裂。

1.6 内置交叉验证

XGBoost允许在每一轮boosting迭代中使用交叉验证。因此,可以方便地获得最优boosting迭代次数。

而GBM使用网格搜索,只能检测有限个值。

需要注意的是在xgboost中迭代次数指的是树的棵树。这与我们广义上的迭代次数是不同的。

1.7 在已有的模型基础上继续

XGBoost可以在上一轮的结果上继续训练。这个特性在某些特定的应用上是一个巨大的优势。

sklearn中的GBM的实现也有这个功能,两种算法在这一点上是一致的。

相信你已经对XGBoost强大的功能有了点概念。注意这是我自己总结出来的几点,你如果有更多的想法,尽管在下面评论指出,我会更新这个列表的!

你的胃口被我吊起来了吗?棒棒哒!如果你想更深入了解相关信息,可以参考下面这些文章:

2、XGBoost 的参数

XGBoost的作者把所有的参数分成了三类:

通用参数:宏观函数控制。

Booster参数:控制每一步的booster(tree/regression)。

学习目标参数:控制训练目标的表现。

在这里我会类比GBM来讲解,所以作为一种基础知识,强烈推荐先阅读这篇文章。

2.1 通用参数

这些参数用来控制XGBoost的宏观功能。

booster[默认gbtree]

选择每次迭代的模型,有两种选择:

gbtree:基于树的模型;

gbliner:线性模型。

silent[默认0]

当这个参数值为1时,静默模式开启,不会输出任何信息。

一般这个参数就保持默认的0,因为这样能帮我们更好地理解模型。

nthread[默认值为最大可能的线程数]

这个参数用来进行多线程控制,应当输入系统的核数。

如果你希望使用CPU全部的核,那就不要输入这个参数,算法会自动检测它。

2.2 booster参数

尽管有两种booster可供选择,我这里只介绍tree booster,因为它的表现远远胜过linear booster,所以linear booster很少用到。

eta[default=0.3, alias: learning_rate]

类似于神经网络中的学习率,但这里eta(论文中是shrinkage的意思)的作用是限制每棵树学到的东西大小,以让更多的树来进行学习。

和GBM中的 learning rate 参数类似。

通过减少每一步的权重,可以提高模型的鲁棒性。

典型值为0.01-0.2。

min_child_weight [default=1]

最小叶子节点中样本的权重和,有点类似与随机森林中的最小叶子节点样本数,设置大点有防止过拟合的作用。

决定最小叶子节点样本权重和。

和GBM的 min_child_leaf 参数类似,但不完全一样。XGBoost的这个参数是最小样本权重的和,而GBM参数是最小样本总数。

这个参数用于避免过拟合。当它的值较大时,可以避免模型学习到局部的特殊样本。

但是如果这个值过高,会导致欠拟合。这个参数需要使用CV来调整。

max_depth [default=6]

和GBM中的参数相同,这个值为树的最大深度。

这个值也是用来避免过拟合的。max_depth越大,模型会学到更具体更局部的样本。

需要使用CV函数来进行调优。

典型值:3-10

max_leaf_nodes

每棵树最大的节点或叶子的数量。

可以替代max_depth的作用。因为如果生成的是二叉树,一个深度为n的树最多生成n2个叶子。

如果定义了这个参数,GBM会忽略max_depth参数。

gamma [default=0, alias: min_split_loss]

可以理解为一般决策树中分裂时候熵(或基尼系数)减少的量,大于这个量才进行分裂。

在节点分裂时,只有分裂后损失函数的值下降了,才会分裂这个节点。Gamma指定了节点分裂所需的最小损失函数下降值。

这个参数的值越大,算法越保守。这个参数的值和损失函数息息相关,所以是需要调整的。

max_delta_step [default=0]

这参数限制每棵树权重改变的最大步长。如果这个参数的值为0,那就意味着没有约束。如果它被赋予了某个正值,那么它会让这个算法更加保守。

通常,这个参数不需要设置。但是当各类别的样本十分不平衡时,它对逻辑回归是很有帮助的。

这个参数一般用不到,但是你可以挖掘出来它更多的用处。

subsample [default=1]

和GBM中的subsample参数一模一样。这个参数控制对于每棵树,随机采样的比例

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值