安装onnxruntime
去官方下载自己匹配cuda版本onnxruntime,根据自己的情况选择合适的版本,如果下载慢或者下载不下来可以去国内镜像下载gitee.com/FIRC/onnxruntime_mirror

博主的cuda版本是11.8,cudnn版本是8.9.7,因此选择OnnxRuntime v1.15.0版本。
cmd命令框下输入nvcc -V 查询cuda版本;
C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\vxx.x\include\cudnn_version.h 查看cuda版本.
在assert下选择onnxruntime-win-x64-gpu-1.15.0.zip下载
双击运行解压后即可:
打开VS 2019:新建新项目---->空项目---->配置项目---->项目路径以及勾选“将解决方案和项目放在同一目录中---->点击创建。
在解决方案–>源文件–>右键添加新建项。这里暂时可以默认空着不做处理。
配置onnxruntime:项目---->属性。假设没有新建cpp文件,空项目的属性页就不会存在C/C++这一项目。
添加附加包含目录:Release | x64---->C/C+±—>常规---->附加包含目录。
D:\C++_demo\onnxruntime-win-x64-gpu-1.15.0\include
链接器:Release | x64---->链接器---->常规---->附加库目录。
D:\C++_demo\onnxruntime-win-x64-gpu-1.15.0\lib
链接器:Release | x64---->链接器---->输入---->附加依赖项。
在D:\C++_demo\onnxruntime-win-x64-gpu-1.15.0\lib下找到附加依赖项的文件(.lib文件)。
onnxruntime.lib
onnxruntime_providers_cuda.lib
onnxruntime_providers_shared.lib
安装OpenCV
使用opencv-4.8.0-windows.exe版本
双击运行解压后即可,博主重命名为opencv4.8.0:
添加附加包含目录:Release | x64---->C/C++—>常规---->附加包含目录。
D:\C++_demo\opencv4.8.0\build\include
链接器:Release | x64---->链接器---->常规---->附加库目录。
D:\C++_demo\opencv4.8.0\build\x64\vc16\lib
链接器:Release | x64---->链接器---->输入---->附加依赖项。
opencv_world480.lib
简化部署
在Release x64模式下测试时,需要将OnnxRuntime所需的.dll文件,以及OpenCV的.dll文件复制到自己项目的Release下。
D:\C++_demo\onnxruntime-win-x64-gpu-1.15.0\lib
D:\C++_demo\opencv4.8.0\build\x64\vc16\bin
===>
D:\C++_demo\onnxruntime_onnx\x64\Release
没有Release目录时,需要在Release | x64模式下运行一遍代码,代码部分在下面提供,读者可以先行新建文件复制代码。
将所有的.dll文件和.exe文件放在同一个目录下可以简化应用程序的部署过程。用户无需手动配置环境变量或安装额外的组件即可运行程序。
ONNXRuntime调用onnx模型
ONNXRuntime推理核心流程
初始化ONNXRuntime环境
通常涉及到创建一个 Ort::Env 对象,它包含了线程池和其他运行时设置。
Ort::Env env = Ort::Env(ORT_LOGGING_LEVEL_ERROR, "AlexNet-onnx");
Ort::Env参数 | 日志严重性级别 (logging severity level) | 环境名称 (environment name) |
---|---|---|
作用 | 决定了哪些级别的日志信息将被记录下来,运行时提供了几个预定义的宏来表示不同的日志级别。 | 主要用于标识特定的环境实例,尤其是在多线程或多进程环境中可以帮助追踪日志信息来源。 |
内容 | ORT_LOGGING_LEVEL_FATAL:仅记录致命错误;ORT_LOGGING_LEVEL_ERROR:记录错误信息;ORT_LOGGING_LEVEL_WARNING:记录警告信息;ORT_LOGGING_LEVEL_INFO:记录信息性消息;ORT_LOGGING_LEVEL_VERBOSE:记录详细的信息,包括调试信息。 | 字符串 |
设置会话选项
通常包括配置优化器级别、线程数和设备(GPU/CPU)使用等。
Ort::SessionOptions session_options;
session_options.SetGraphOptimizationLevel(ORT_ENABLE_BASIC);
session_options.SetIntraOpNumThreads(4);
OrtSessionOptionsAppendExecutionProvider_CUDA(session_options, 0);
OrtSessionOptionsAppendExecutionProvider_CPU(session_options, 1);
会换选项 | 优化器级别 | 线程数 | 设备使用 |
---|---|---|---|
函数 | SetGraphOptimizationLevel | SetIntraOpNumThreads | SetExecutionMode |
作用 | 在模型加载到ONNXRuntime之前对其进行图优化的过程,提高执行效率 | 设置每个运算符内部执行时的最大线程数 | CUDA/CPU设备选择,CUDA优先级设为0,CPU优先级设为1,优先尝试使用CUDA执行。 |
参数 | ORT_ENABLE_BASIC:基本的图优化; ORT_DISABLE_ALL:禁用所有优化;ORT_ENABLE_EXTENDED:启用扩展优化;ORT_ENABLE_ALL:启用所有优化。 | 整型 | session_options:用于配置会话选项; 整型:优先级值,数值越低优先级越高。 |
加载模型并创建会话
加载预训练的ONNX模型文件,使用运行时环境、会话选项和模型创建一个Ort::Session对象。
Ort::Session session_(env, modelPath.c_str(), session_options);
Ort::Session参数 | Ort::Env | model_path | session_options |
---|---|---|---|
内容 | ONNX 运行时环境对象 | 模型的位置或者模型的二进制数据 | 会话选项 |
获取模型输入输出信息
从Ort::Session对象中获取模型输入和输出的详细信息,包括数量、名称、类型和形状。
Ort::AllocatorWithDefaultOptions allocator;
int input_nodes_num = session_.GetInputCount();
int output_nodes_num = session_.GetOutputCount();
auto input_name = session_.GetInputNameAllocated(i, allocator);
auto output_name = session_.GetOutputNameAllocated(i, allocator);
session_.GetInputTypeInfo(i).GetTensorTypeAndShapeInfo().GetShape();
session_.GetOutputTypeInfo(i).GetTensorTypeAndShapeInfo().GetShape();
预处理输入数据
对输入数据进行颜色空间转换,尺寸缩放、标准化以及形状维度扩展操作。
cv::cvtColor(image, rgb, cv::COLOR_BGR2RGB);
cv::resize(rgb, blob, cv::Size(input_w, input_h));
blob.convertTo(blob, CV_32F);
blob = blob / 255.0;
cv::subtract(blob, cv::Scalar(0.485, 0.456, 0.406), blob);
cv::divide(blob, cv::Scalar(0.229, 0.224, 0.225), blob);
cv::Mat timg = cv::dnn::blobFromImage(blob);
这部分不是OnnxRuntime核心部分,根据任务需求不同,代码略微不同。
推理准备
创建输入和输出张量,这些张量是用于存储推理数据的内存块,分配内存给这些张量,以准备数据输入。
std::array<int64_t, 4> input_shape_info{ 1, 3, input_h, input_w };
auto allocator_info = Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU);
Ort::Value input_tensor_ = Ort::Value::CreateTensor<float>(allocator_info, timg.ptr<float>(), tpixels, input_shape_info.data(), input_shape_info.size());
函数 | Ort::MemoryInfo::CreateCpu | Ort::Value::CreateTensor |
---|---|---|
作用 | ONNX Runtime运行一个模型时,用于描述内存分配的信息,包括内存的位置(CPU 或 GPU)以及内存的具体类型(固定内存或常规内存) | 封装了张量数据,可以作为模型推理的输入或输出。 |
参数1 | OrtDeviceAllocator:默认的分配器类型,它用于分配设备(CPU或GPU)上的内存;OrtArenaAllocator:使用内存池来分配内存,可以减少内存分配和释放的开销,提高内存操作的效率;OrtCustomAllocator:自定义内存分配器。 | 用于分配和管理张量数据的内存。 |
参数2 | OrtMemTypeCPUInput:表示任何非CPU使用的CPU内存,用于模型的输入,数据将由非CPU执行器(GPU)使用;OrtMemTypeCPUOutput: 由非CPU输出的、CPU可访问的内存,用于模型的输出,确保数据在CPU上可用;OrtMemTypeCPU:通常与 OrtMemTypeCPUOutput 相同,指CPU可访问的内存;OrtMemTypeDefault:表示执行器的默认内存分配器,用于分配内存时没有特别指定其他类型时使用。 | 张量的形状 |
参数3 | ----- | 张量的大小 |
参数4 | ----- | 张量的指针 |
参数6 | ----- | 张量的维度数 |
参数3 | ----- | 张量的数据类型 |
执行推理
调用Ort::Session::Run方法,传入输入张量、输出张量和其他必要的参数,执行推理。
ort_outputs = session_.Run(Ort::RunOptions{ nullptr }, inputNames.data(), &input_tensor_, 1, outNames.data(), outNames.size());
session_.Run参数 | run_options | input_names | input_values | input_count | output_names | output_count |
---|---|---|---|---|---|---|
含义 | 是否进行性能分析、是否仅执行到达特定输出的最小子图等,通常是默配置。 | 输入节点名称数组 | 用于存储模型的输入数据Ort::Value | 输入数量 | 输出节点名称数组 | 输出数量 |
后处理推理结果
推理完成后,从输出张量中获取结果数据,根据需要对结果进行后处理,以获得最终的预测结果。
const float* pdata = ort_outputs[0].GetTensorMutableData<float>();
cv::Mat prob(num, nc, CV_32F, (float*)pdata);
cv::minMaxLoc(prob, &minv, &maxv, &minL, &maxL);
这部分不是OnnxRuntime核心部分,根据任务需求不同,代码基本不同。
ONNXRuntime推理测试代码,可以随便找个onnx模型
#include <iostream>
#include<onnxruntime_cxx_api.h>
using namespace std;
using namespace Ort;
int main()
{
const wchar_t* model_path = L"D:\\yolov8s.onnx";//模型路径
Ort::Env env;//创建env
Ort::Session session(nullptr);//创建一个空会话
Ort::SessionOptions sessionOptions{ nullptr };//创建会话配置
session = Ort::Session(env, model_path, sessionOptions);
//获取输入节点数量,名称和shape
size_t inputNodeCount= session.GetInputCount();
std::cout << "输入节点数量:" << inputNodeCount << "\n";
Ort::AllocatorWithDefaultOptions allocator;
std::shared_ptr<char> inputName = std::move(session.GetInputNameAllocated(0, allocator));
std::vector<char*> inputNodeNames;
inputNodeNames.push_back(inputName.get());
std::cout << "输入节点名称:" << inputName << "\n";
Ort::TypeInfo inputTypeInfo = session.GetInputTypeInfo(0);
auto input_tensor_info = inputTypeInfo.GetTensorTypeAndShapeInfo();
ONNXTensorElementDataType inputNodeDataType = input_tensor_info.GetElementType();
std::vector<int64_t> inputTensorShape = input_tensor_info.GetShape();
std::cout << "输入节点shape:";
for (int i = 0; i<inputTensorShape.size(); i++)
{
std::cout << inputTensorShape[i]<<" ";
}
std::cout << "\n";
//获取输出节点数量、名称和shape
size_t outputNodeCount = session.GetOutputCount();
std::cout << "输出节点数量:" << outputNodeCount << "\n";
std::shared_ptr<char> outputName = std::move(session.GetOutputNameAllocated(0, allocator));
std::vector<char*> outputNodeNames;
outputNodeNames.push_back(outputName.get());
std::cout << "输出节点名称:" << outputName << "\n";
Ort::TypeInfo type_info_output0(nullptr);
type_info_output0 = session.GetOutputTypeInfo(0); //output0
auto tensor_info_output0 = type_info_output0.GetTensorTypeAndShapeInfo();
ONNXTensorElementDataType outputNodeDataType = tensor_info_output0.GetElementType();
std::vector<int64_t> outputTensorShape = tensor_info_output0.GetShape();
std::cout << "输出节点shape:";
for (int i = 0; i<outputTensorShape.size(); i++)
{
std::cout << outputTensorShape[i]<<" ";
}
std::cout << "\n";
getchar();
}