深度学习(Deep learning)知识点

深度学习

对深度学习模型相关的知识点进行总结。

深度学习是一种机器学习模型,是一种基于神经网络的学习方法。
它的核心基础是通过构建多层神经网络来学习数据的表示和特征,这些神经网络由多个神经元组成,每个神经元都可以对输入数据进行非线性变换。
通过将这些神经元连接在一起,深度学习模型可以学习到数据的复杂结构和特征。从而实现对数据的分类、预测和生成等任务。
深度学习的优点是可以自动学习数据的特征和表示,不需要人工设计特征提取器,因此可以处理大规模的数据和复杂的任务。同时,深度学习模型具有很强的泛化能力,可以在不同的数据集上进行迁移学习。
深度学习的核心技术包括神经网络、反向传播算法、激活函数、优化算法等。

  • 其中,神经网络是深度学习的基础,它由多个神经元组成,可以对输入数据进行非线性变换。
  • 反向传播算法是深度学习的核心算法,它用于更新神经网络的权重,从而实现对数据的学习。
  • 激活函数用于对神经元的输出进行非线性变换,从而增加模型的表达能力。
  • 优化算法用于优化模型的参数,从而提高模型的性能。

1. 激活函数有哪些

  • 一一一一一一一一一一一一一一一一一一一一一一一
    1. sigmoid函数:
  • 应用场景:多分类问题
  • 作为激活函数将词向量映射成标签的概率值
  • 它将多个神经元的输出,映射到(0,1)区间内,可以看成概率来理解,从而来进行多分类!(0,1)的值,而这些值的累和为1(满足概率的性质),那么我们就可以将它理解成概率,在最后选取输出结点的时候,我们就可以选取概率最大(也就是值对应最大的)结点,作为我们的预测目标
    2. ReLu函数:
  • 如果输入值为负,如果输入值为正,则返回输入值为本身,结构简单,提高神经网络整体效率,缓解梯度消失,
  • 缺点:输入小于0时,ReLu函数恒为0,神经元无法学习,Leaky ReLu函数可以觉得这个问题,当输入值小于0时,函数输出0.01倍的输入值,神经元仍然有微小的梯度

2. 激活函数有什么作用

一个神经元是否应该被激活取决于激活函数。激活函数计算加权和,并进一步加上偏差以得出结果。神经网络基于感知器,因此,如果我们想了解神经网络的工作原理,则必须学习感知器的工作原理。

它的作用是将神经元的输入转换为输出,从而使神经元能够对输入数据进行分类或预测。

为了确定神经网络的输出,我们使用激活函数。它的主要任务是对结果值在0到1或-1到1等之间进行映射。激活函数基本上分为两种类型:

线性激活功能
非线性激活函数

在选择激活函数时,需要考虑以下几个问题和模型的特点:

  1. 数据分布:不同的数据分布可能需要不同的激活函数。例如,当数据分布呈现出双峰分布时,Sigmoid 函数可能是一个更好的选择,因为它可以将输入值映射到 0 到 1 之间,从而更好地表示二分类问题的输出。
  2. 模型复杂度:不同的激活函数可能会对模型的复杂度产生影响。例如,ReLU 函数具有计算简单、速度快、不容易出现梯度消失等优点,因此在深度学习模型中经常使用。
  3. 梯度消失问题:在深度学习模型中,梯度消失问题是一个常见的问题。一些激活函数,如 Sigmoid 函数,在负半轴上的梯度消失速度较快,可能会导致模型训练困难。因此,在选择激活函数时,需要考虑梯度消失问题。
  4. 模型的表达能力:不同的激活函数可能会对模型的表达能力产生影响。例如,ReLU 函数可以使模型具有更强的表达能力,从而更好地处理复杂的问题。

总之,在选择激活函数时,需要考虑数据分布、模型复杂度、梯度消失问题和模型的表达能力等因素。同时,需要根据具体问题和模型的特点来选择合适的激活函数,以获得更好的模型性能。

3.几种常见的激活函数,以及什么场景下用什么激活函数

激活函数是神经网络中非常重要的组成部分,它的作用是对神经元的输出进行非线性变换,从而增强神经网络的表达能力。常见的激活函数包括:
1. Sigmoid 函数:常用于二分类问题,因为它可以将输入值映射到 0 到 1 之间,从而可以表示二分类问题的输出。
2. Tanh 函数:常用于回归问题,因为它可以将输入值映射到-1 到 1 之间,从而可以表示回归问题的输出。
3. ReLU 函数:常用于深度学习模型,因为它具有计算简单、速度快、不容易出现梯度消失等优点。
4. Leaky ReLU 函数:常用于深度学习模型,因为它可以解决 ReLU 函数在负半轴上的梯度消失问题。
5. Softmax 函数:常用于多分类问题,用于将一个数值向量转换为表示各个类别概率的向量。它的输出是一个数值向量,其中每个元素都表示输入向量属于某个类别的概率。 因为它可以将输入向量转换为表示各个类别的概率分布,从而方便后续的分类决策。

4. 损失函数有哪些

  • 一一一一一一一一一一一一一一一一一一一一一一一
    1. loss
  • 应用场景:回归问题
  • 只要预测值和标签值不相等或者差距大于阈值,loss+=1
  • 直接对应分类判断错误的个数,属于非凸函数
    2. abs loss(绝对值损失):
  • 计算预测值与目标值的差的绝对值。
    3. Mean Absolute Error(MAE)L1范数:
  • 应用场景:一般用于回归问题
  • 在绝对值损失的基础上算平均值。
    4. square loss(平方损失):
  • 应用场景:分类问题和回归问题都可以,经常应用于回归问题
  • 预测和标签对应,然后求差的平方,累加起来就是平方损失
    5. Mean Squared Error(MSE,均方差损失):
  • 应用场景:一般用于回归问题
  • 预测和标签一一对应。在平方损失的基础上算了个平均值。
    6. hinge loss(合页损失函数):
  • 应用场景:N分类问题
  • loss输入:模型输入一个N维向量为分类结果,针对这个向量计算loss.(这个N维向量一般是一个全连接层(线性层)的输出,是模型对于每个类别的打分。)不仅要分类正确,而且确信度要足够高。
  • 向量的每个分量和正确分类的分量比较,如果差的不多甚至超过(说明有混淆),则在loss中反映出来。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值