《统计学习方法》读书笔记-----决策树:特征选择

特征选择

特征选择就是选取对训练数据具有分类能力的特征,这样可以提高决策树学习的效率。通常特征选择的准则是信息增益或信息增益比。
1. 熵和条件熵

在信息论与概率统计中,熵(entropy)是表示随机变量不确定性的度量。
X X 是一个取有限个值的离散随机变量,其概率分布为

P(X=xi)=pi,i=1,2,...,n

随机变量 X X 的熵定义为
H(X)=i=1npilogpi

由于熵只依赖于 X X 的分布,与X的取值无关,所以可以将 X X 的熵记作H(p)

H(p)=i=1npilogpi H ( p ) = − ∑ i = 1 n p i l o g p i

熵越大,随机变量的不确定性越大。


设有随机变量 (X,Y) ( X , Y ) ,其联合概率分布为:

P(X=xi,Y=yi)=pij,i=1,2,...,n;j=1,2,...,m P ( X = x i , Y = y i ) = p i j , i = 1 , 2 , . . . , n ; j = 1 , 2 , . . . , m

条件熵 H(Y|X) H ( Y | X ) 表示在已知随机变量 X X 的条件下随机变量Y的不确定性。
随机变量 X X 给定的条件下随机变量Y条件熵(conditional entropy) H(Y|X) H ( Y | X ) 定义为:
H(Y|X)=i=1npiH(Y|X=xi) H ( Y | X ) = ∑ i = 1 n p i H ( Y | X = x i )

其中, pi=P(X=xi),i=1,2,...,n p i = P ( X = x i ) , i = 1 , 2 , . . . , n
条件熵就是 X X 给定条件下Y的条件概率分布的熵对 X X 的数学期望。


当熵和条件熵中的概率由数据估计(特别是极大似然估计)得到时,对应的熵和条件熵分别称为经验熵(empirical entropy)和条件经验熵(empirical conditional entropy)。

2. 信息增益
信息增益(information gain)表示得知特征X的信息而使得类 Y Y 的信息不确定性减小的程度。

定义:特征A对训练数据集 D D 的信息增益g(D,A),定义为集合 D D 的经验熵H(D)与特征 A A 给定条件下D的经验熵 H(D|A) H ( D | A ) 之差,即:

g(D,A)=H(D)H(D|A) g ( D , A ) = H ( D ) − H ( D | A )

一般地,熵 H(Y) H ( Y ) 与熵 H(Y|X) H ( Y | X ) 之差称为互信息(mutual information)。决策树学习中的互信息等价于训练数据集中类与特征的互信息。

信息增益大的特征具有更强的分类能力。根据信息增益准则的特征选取方法为:对训练数据集(或子集) D D ,计算其每个特征的信息增益,并比较它们的大小,选择信息增益最大的特征。

设训练数据集为D |D| | D | 表示其样本容量,即样本个数。设有 K K 个类Ck,k=1,2,...,k |Ck| | C k | 为属于类 Ck C k 的样本个数, Kk=1|Ck|=|D| ∑ k = 1 K | C k | = | D | ,设特征 A A n个不同的取值 a1,a2,...,an a 1 , a 2 , . . . , a n ,根据特征 A A 的取值,将D划分为 n n 个子集D1,D2,...,Dn |Di| | D i | Di D i 的样本个数,记子集 Di D i 中属于类 Ck C k 的样本的集合为 Dik D i k ,即 Dik=DiCk D i k = D i ⋂ C k |Dik| | D i k | Dik D i k 的样本个数。于是信息增益的算法如下:

输入:训练数据集 D D 和特征A
输出:特征 A A 对训练数据集D的信息增益 g(D,A) g ( D , A )

(1)计算数据集 D D 的经验熵H(D)

H(D)=k=1K|Ck||D|log2|Ck||D| H ( D ) = − ∑ k = 1 K | C k | | D | l o g 2 | C k | | D |

(2)计算特征 A A 对数据集D的经验条件熵 H(D|A) H ( D | A )
H(D|A)=i=1n|Di||D|H(D|Di)=i=1n|Di||D|k=1K|Dik||Di|log2|Dik||Di| H ( D | A ) = ∑ i = 1 n | D i | | D | H ( D | D i ) = − ∑ i = 1 n | D i | | D | ∑ k = 1 K | D i k | | D i | l o g 2 | D i k | | D i |

(3)计算信息增益
g(D|A)=H(D)H(D|A) g ( D | A ) = H ( D ) − H ( D | A )

3.信息增益比
信息增益的大小是对训练数据集而言的,并没有绝对意义。在分类问题困难时,也就是说在训练数据集的经验熵比较大时,信息增益值会偏大,反之,信息增益值偏小。使用信息增益比(information gain ratio)可以对这一问题进行校正。

定义:
特征 A A 对训练数据集D的信息增益比 gR(D,A) g R ( D , A ) 定义为其信息增益 g(D,A) g ( D , A ) 与训练数据集的经验熵 H(D) H ( D ) 之比:

gR(D,A)=g(D,A)H(D) g R ( D , A ) = g ( D , A ) H ( D )

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值