Holt-Winters 季节方法

Holt-Winters方法由Holt和Winters分别于1957年和1960年提出,旨在捕捉季节性变化。该方法包括预测方程和平滑方程,涉及水平、趋势和季节性组件的平滑。平滑参数包括α、β和γ,适用于季节性周期如年、季度或月份。根据季节性变化是否固定,有两种方法:相加(适用于固定季节性)和相乘(适用于随序列水平变化的季节性)。加法模型中,季节性分量为绝对值,相乘模型中则为相对百分比。阻尼趋势的Holt-Winters方法通常提供更高精度的季节性预测。
摘要由CSDN通过智能技术生成

Holt (1957)和Winters (1960) 扩展了Holt的方法来捕捉季节性变化,该方法分为预测方程和三个平滑方程,一个是水平 lt l t ,一个是趋势 bt b t ,一个是季节性成分 st s t ,采用平滑参数 α,β α , β ∗ γ γ ,用 m m 代表季节性周期,例如一年中季节的数量,季的数量 m = 4 ,月的数量 m=12 m = 12

该方法有两种在季节分量上的区分。当季节变化在整个序列上总体是固定的话,采用相加的方法。当季节变量随着序列的水平呈比例变化时,采用相乘的方法。

采用相加的方法,季节性分量采用序列值的绝对项,在水平方程中序列通过减去季节分量来季节性地调整。每年的季节分量加起来大约为零。

采用相乘的方法,季节饭量表示为相对形式(百分比),通过除以季节分量来周期性地调整序列。在每年,季节分量之和大概等于 m m .

Holt-Winters 加法模型

对于居民用水量的预测,可以使用Holt-Winters季节性指数平滑方法进行建模和预测。Holt-Winters方法是指数平滑的一种扩展,可以考虑到数据的趋势和季节性Holt-Winters方法分为三个部分:水平平滑、趋势平滑和季节性平滑。 1. 水平平滑(Level Smoothing):水平平滑是对数据的整体波动进行平滑处理。使用初始的水平值L(0),通过以下公式计算当前的水平值L(t): L(t) = α * Y(t) + (1 - α) * (L(t-1) + T(t-1)) 其中,Y(t)表示在时间t的观测值,L(t-1)表示在时间t-1的水平值,T(t-1)表示在时间t-1的趋势值,α表示水平平滑系数。 2. 趋势平滑(Trend Smoothing):趋势平滑是对数据的趋势进行平滑处理。使用初始的趋势值T(0),通过以下公式计算当前的趋势值T(t): T(t) = β * (L(t) - L(t-1)) + (1 - β) * T(t-1) 其中,L(t)表示在时间t的水平值,L(t-1)表示在时间t-1的水平值,T(t-1)表示在时间t-1的趋势值,β表示趋势平滑系数。 3. 季节性平滑(Seasonal Smoothing):季节性平滑是对数据的季节性进行平滑处理。使用初始的季节性值S(0),通过以下公式计算当前的季节性值S(t): S(t) = γ * (Y(t) - L(t)) + (1 - γ) * S(t-m) 其中,Y(t)表示在时间t的观测值,L(t)表示在时间t的水平值,S(t-m)表示在时间t-m的季节性值(m为季节性周期),γ表示季节性平滑系数。 通过以上三个步骤,可以得到预测值F(t): F(t) = L(t-1) + T(t-1) + S(t-m) 根据历史数据进行逐步更新和调整,即可实现居民用水量的预测。 需要注意的是,Holt-Winters方法适用于具有明显季节性的时间序列数据,但对于长期趋势变化较大或季节性较不稳定的数据,预测结果可能会有一定误差。因此,在应用该方法时,需要根据实际情况进行评估和调整,选择合适的参数和模型。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值