🍉 CSDN 叶庭云:https://yetingyun.blog.csdn.net/
在众多真实世界应用(如医疗保健和工业)中,多变量时间序列数据虽蕴含丰富信息,却因缺乏标签以及高维度特性而面临挑战。近期,自监督学习研究展示了其在无标签条件下学习丰富表示的潜力,但仍有提升空间,特别是在学习解耦嵌入和应对归纳偏差(如转换不变性)方面。
为应对这些难题,我们提出了 TimeDRL:一个创新的多变量时间序列表征学习框架,其核心在于解耦双层嵌入。TimeDRL 的三大亮点包括:(i)采用 [CLS] 令牌策略,从时间序列的 patch 数据中解耦出时间戳级与实例级嵌入;(ii)结合时间戳预测与实例对比任务进行解耦表征学习,前者通过预测损失优化时间戳级嵌入,后者则利用对比损失优化实例级嵌入;(iii)以及避免使用增强方法来消除归纳偏差&