C-RPN阅读笔记:Siamese Cascaded Region Proposal Networks for Real-Time Visual Tracking

CVPR2019
2019年CVPR上的文章
论文原文地址:https://arxiv.org/abs/1812.06148?context=cs

作者对发表在CVPR2018上的SiamRPN做的改进,采用了多个RPN,这样做既可以充分利用深层和浅层的特征,还可以更加精确的对目标进行定位和包围框的回归。
话不多说,先上框架图:
在这里插入图片描述

两个主要改进:
  1. 联级的RPN网络
  2. 提出Feature Transfer Block (FTB)来更好的融合多层feature map

RPN和孪生网络的结合似乎在跟踪中越来越火了,它不仅精度高,而且比原始的孪生网络跟踪器SiamFC速度更加快,因为SiamRPN避免了多尺度的预测金字塔,它是直接从proposals中选择最好的包围框。关于RPN在孪生网络中的应用,这篇文章有详细介绍:https://blog.csdn.net/fzp95/article/details/80982201
在联级的RPN网络中,除了第一个(左一)RPN的anchors是预先指定的,和SiamRPN的结构一样。后面的RPN的anchors都是从上一个RPN中选择而来,剔除了简单负样本的anchors,这样使得正负样本更加平衡。而且这些anchors的位置和box的大小会根据前一个RPN的输出来调整。
在这里插入图片描述
可以看出,联级的RPN网络使得目标在最终的响应图中更加突出。
此外,后面RPN输入的feature map都是经过多层特征融合而成的。
作者采用Feature Transfer Block (FTB)来进行多层特征融合,直接看结构吧(需要注意:本文中 l − 1 l-1 l1代表更深的卷积层):
在这里插入图片描述
由流程图(图7)可以看出最后得到的anchors集中在一起,这些经过回归会有很多proposal,然后作者采用和SiamRPN同样的策略,即:

  1. 舍弃的距离中心超过7的anchors
  2. (1)余弦窗来抑制大位移(2)一个抑制大的尺寸变化的惩罚
  3. 以上的抑制都加上后,再对剩下的anchors中取前K个proposal。
  4. 最后通过非极大抑制(NMS)得到最终的BB
实验结果:

OTB:
在这里插入图片描述
VOT2026和VOT2017:
在这里插入图片描述
还有在最近新出的一些测试集上LaSOT、TrackingNet,就不贴了
看看最后的消融实验:
表4的行数据表示联级RPN数量对性能的影响。表5的行数据表示是否过滤掉简单负的anchor对性能的影响。表6的行数据表示是否进行多层特征融合对性能的影响。
在这里插入图片描述

  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值