《通过呼吸生物识别技术用户验证》
一、摘要
各种移动应用程序和智能设备中日益增长的安全问题可靠和方便的用户验证方法创造了迫切的需求。传统的核查方法要求用户提供其秘密(例如输入密码和收集指纹)。 我们设想,用户验证的基本趋势是用户不能积极参与验证过程。为此,本文提出了一个连续的用户验证系统,它使用广泛部署的WiFi基础设施来捕捉植根于用户呼吸运动的独特生理特性。 与现有的连续验证方法不同,它依赖于受限的场景/用户行为(例如击键和步态),本文系统可以很容易地集成到任何WiFi基础设施中,以提供非侵入性的连续验证。具体来说,本文从WiFi的信道状态信息(CSI)中提取呼吸相关信号。然后,基于呼吸的波形形态学分析和模糊小波变换,推导出用户特定的呼吸特征。此外,还开发了一种基于深度学习的用户验证方案,以准确地识别合法用户并检测欺骗攻击的存在。
二、引言介绍
呼吸监测引起了相当大的关注,因为它提供了关于一个人的身体健康的基本信息,这可以使各种新兴的应用成为可能。例如,呼吸模式可用于早期发现许多领域的疾病,包括睡眠、肺学和心脏病学。此外,现有的研究已经表明,人们的呼吸运动在呼吸节律、呼吸声和相应的胸腹运动方面产生了独特的生物特征信息,而且呼吸是一种不断的、自发的运动,不需要额外的操作。因此,可以利用呼吸运动来区分个体。
本文一开始的想法是可不可以不需要用户手动输入身份验证密码,就能够24小时自动识别用户身份信息。现有的方法通常利用用户独特的行为模式(例如步态模式、击键/鼠标动态)来持续执行身份验证。然而,这些系统只能在用户参与特定活动时才能识别用户。因此,由自发生理过程(即心脏搏动和呼吸)产生的生物特征可以很好地用于连续识别个体。
例如,最近的研究利用三种不同的呼吸姿势(即嗅闻、正常呼吸和深呼吸)产生的音频来执行用户验证。然而,它需要用户在麦克风附近执行特定的呼吸姿势,现实中是不方便和不切实际的。本文重新使用了在我们日常生活中普遍存在的WiFi基础设施,并设计了一个创新的用户验证系统,可以根据用户的呼吸生物特征自动验证用户的身份,而不依赖于任何特定的活动。例如,本文系统可以让用户登录他的笔记本电脑,作为对他们密码的帮助,以提高安全性(甚至在未来不输入密码),并在没有额外身份验证的情况下继续访问特定于用户的应用程序。如下图:
本文系统的目标是重建可靠的呼吸模式,直接从WiFi信号中检查CSI,这会有来自环境和人体的干扰和噪音。为此,本文从支持WiFi的设备中提取与呼吸相关的CSI数值,并应用基于经验模式分解(EMD)的滤波器来减轻固有无线电干扰或其他不相关的身体运动所造成的影响。与传统滤波器(例如低通滤波器)不同,由于固定的截止频率,可能会错误地删除有用的信号分量,基于EMD的滤波器可以自适应地过滤噪声分量,以更好地保留呼吸相关信号。为了确定CSI样本中受呼吸运动显著影响的敏感因子载波,可根据信号的周期性和灵敏度,建立子载波选择机制。该系统进一步重建呼吸运动信号,利用选定的子载波重建可靠的呼吸模式。
为了提取有效的特征,本文检查重建的CSI信号,并识别包含完整呼吸周期的片段。然后利用波形形态学分析和模糊小波包变换(FWPT),提取各呼吸段特有的呼吸生物特征。提取的形态特征(例如吸入/呼出节律、呼吸深度和持续时间)和基于FWPT的生物特征构成了一个独特的互补集,以区分每个个体。这些派生的呼吸特征用于在系统注册期间构造每个合法用户的配置文件。在验证过程中,系统对运行时导出的呼吸特征进行不断的检查,并与用户的配置文件进行比较,以验证合法用户或拒绝非法入侵,后者试图通过模仿合法用户的呼吸模式来入侵系统。
为了进一步确定用户在多个用户合法访问服务的情况下的身份(例如,智能家居中的热风炉可供父母使用,但不适用于祖父母和幼儿),本文建立了一个双层深度神经网络(DNN)模型,以学习内在人类呼吸特征的高层次抽象。
三、相关工作
(1)基于生物的用户验证
已经开发的基于生理的生物特征来识别用户的身份(例如:指纹和虹膜),基于行为的生物特征(例如:步态模式,按键/鼠标动力学或基于振动的手指输入)。这些验证方案不仅需要专用传感器,而且容易受到重放/欺骗攻击。
(2)持续用户验证
一些方法利用生理生物特征,如面部识别和心跳生命信号,以及行为生物特征(例如触觉动力学和步态模式)为持续的用户验证提供了解决方案,但它们要么需要专用设备,要么依赖于用户的积极参与,是强加于用户的。
(3)基于生命体征的核查
现有研究表明,不同人群心跳/呼吸动态的独特性可用于识别用户。然而,这些系统要么要求用户将专用设备附加在其身体上,要么要求用户坐在雷达设备前面,这在许多应用场景中是不方便的。此外,使用呼吸声音进行用户验证,它要求用户将移动设备保持在非常接近用户鼻子的位置,这在许多实际场景中也是不适用的。
(4)基于无线电的传感/验证
无线无线电信号已被用来监测和检测人类活动,以一种非接触式和隐私保护的方式,如日常活动识别和人类动态等。最近的一些研究根据与人类日常活动和步态模式相关的不同CSI变化来识别用户。然而,这些系统要求用户参与特定的活动。
不同的是,本文采取了流行的WiFi设备来提取植根于呼吸运动的独特生物特征进行验证,这不需要用户的积极参与,并且能够以非接触、不引人注目的方式持续进行用户验证。并且,研究人员已经证明了使用接收信号强度(R SS)或CSI的成功,能够实现从现有的Wi Fi来跟踪人类的生命体征(即呼吸和心率)。
四、可行性
(1)呼吸中的独特生物计量信息
由于人类复杂多样的生理结构(例如膈肌和肋间肌肉的力量和胸腔的体积),与胸部运动和腹部运动有关的呼吸运动将呈现出不同的大小和模式。现有研究证实,人们的呼吸运动具有独特的生物特征信息。且一个人的呼吸运动的独特性将在很长一段时间内保持不变,尽管年龄、吸烟习惯、体重和轻度呼吸道疾病发生了变化。由于呼吸而引起的膈肌收缩在的大部分时间没有意识。因此,呼吸运动是一种自发的胸部运动,可以被认为是一种理想的生物特征,用于持续的用户验证。
(2)捕获使用WiFi的单一呼吸生物计量学
一些现有的研究表明,成功地使用现有Wi Fi信号的CSI来连续跟踪用户的呼吸速率。 与基于RSS的方法相比,细粒度CSI提供了多个OFDM子载波的振幅和相位信息,这些子载波分别经历了不同的多径和阴影效应,从而可以获得更精确的呼吸模式。本文发现高度敏感的CSI可以进一步捕捉呼吸运动所携带的独特生物特征信息。下图显示了当两个人分别坐在设备前面并正常呼吸时,从移动设备中提取的子载波上过滤的CSI振幅值。
观察到,对应于两个人的CSI模式在周期模式和形态特征方面有显著差异,例如脉宽、图中波峰/槽周围的小波动,这促使我们使用普遍的WiFi信号来捕捉这种独特的呼吸运动,以供用户验证。
系统挑战:
1)该系统应对干扰和噪声具有鲁棒性,以便在现实世界的无线环境中从WiFi信号中重建可靠的呼吸模式;
2)该系统需要从受到微妙呼吸运动影响的无线信号中提取用户独特的呼吸生物特征,以区分人;
3)我们需要开发一种易于部署的验证模型,能够准确地检测欺骗攻击,并识别移动设备上用户的身份。
五、攻击模型和系统概述
1.攻击模式
(1)随机攻击
敌人对用户的呼吸模式没有任何了解。当攻击系统时,对手保持与用户相同的位置,并在呼吸速度、吸气/呼气节奏和深度方面以随机选择的方式呼吸。
(2)模仿攻击
敌人已经观察到用户如何多次使用呼吸通过系统。对手保持与用户相同的位置,并试图模仿用户的呼吸模式来通过系统。
2.系统综述
系统的基本思想是检查WiFi信号的细粒度CSI,并提取植根于用户呼吸运动的独特生物特征信息。
该系统首先通过移动设备(例如笔记本电脑)从正常WiFi流量中收集30个OFDM子载波组的时间序列CSI测量值。
一旦系统通过找到呼吸频率分量来确定无线信号包含重复的呼吸模式,它就会执行呼吸信号校准,以获得与呼吸运动相关的可靠CSI测量值。首先对采集到的数据进行处理,通过基于经验模式分解(EMD)的滤波器去除环境噪声。所提出的基于EMD的滤波器可以在数据分析的基础上自适应地去除噪声分量(例如内在/环境噪声和不相关的身体干扰),并最好地保留与呼吸运动相关的频率分量。为了获得最可靠的呼吸信号,本文利用基于周期和灵敏度的子载波选择策略,通过比较CSI测量值的周期性和方差,选择对微小人体运动最敏感的子载波。
然后,该系统对呼吸周期进行呼吸分割和特征提取,并提取相应的独特呼吸特征。为了确保系统在一个完整的呼吸周期中捕获独特的生物特征信息,该系统执行呼吸分割,通过识别吸入和呼气过程产生的替代增加和减少趋势(即向下模式)来确定包含呼吸槽-休息模式的CSI测量值片段。
接下来,使用呼吸特征提取从每个呼吸段的CSI测量值中获得独特的呼吸相关生物特征。 特别采用两种类型的呼吸特征,可以全面描述植根于呼吸运动的独特生物特征信息:形态特征和模糊小波包变换(FWPT)特征。此外,FWPT特征使用不同尺度的小波分析频域中的呼吸段,从而产生更细粒度的特征,可以反映呼吸运动的复杂频率特征。
提取的呼吸特征作为配置文件,用于构建用户注册系统。用户注册后,系统以呼吸特征作为输入,执行基于呼吸的用户验证。具体来说,在验证阶段,呼吸ID通过检查阈值来确定是否为用户访问,以计算传入数据与所有用户配置文件之间的特征距离。此外,系统可以通过使用深度神经网络(DNN)分类器来识别合法用户的身份,并抵御各种类型的攻击(例如随机攻击或模仿攻击)。注意到,用户的呼吸运动通常在他们的日常生活中是稳定的,如果用户的呼吸模式由于剧烈运动或波动的情绪而发生了很大的变化,那么系统需要被设计成接受用户的反馈并执行适应性配置文件更新以适应这些变化。
六、呼吸信号校准
1.基于EMD的噪声去除
为了减轻这些噪声的影响,本文使用基于经验模式分解(EMD)的滤波器来去除不相关的信号(呼吸频带外的信号)。基于EMD的滤波是完全数据驱动的,可以基于信号本身而不是固定的截止频率动态地滤除非信号分量。
2.基于周期和灵敏度的子载波选择
由于每个子载波经历独特的多径和阴影效应,我们观察到不同子载波的CSI对微妙的呼吸运动有不同的敏感性。系统需要识别捕获最独特的生物特征信息的子载波,以确保准确的用户验证。因此,提出寻找具有最强周期性和敏感性的子载波,并利用它提取呼吸的生物特征。
七、呼吸分割与特征提取
1.呼吸分段作用
由于多径和阴影效应,不同的子载波具有不同的CSI振幅,即使它们是由相同的呼吸运动引起的。如图所示,在一个完整的呼吸周期(即吸入和呼出)中,子载波#1的导出呼吸信号呈现出向上下降的趋势,而子载波#15的信号则呈现相反的趋势:
这一观察表明,形成波峰(即上升趋势)或波谷(即下降趋势)的原因不是确定的,可以是吸入或呼出。因此,本文将每个down-up-down趋势定义为一个呼吸段,其中至少包括一个吸入呼气阶段或一个呼出吸气阶段。另外,呼吸段可以通过在呼吸信号中找到局部最大值/最小值来确定。又由于每个波峰或波谷会有多个局部最值,故为了使每一段保持一致,分别选择波峰上最左局部最大值和波谷上最右局部最小值作为起点和终点。根据检测到的起点和终点,可以得到相应的呼吸段(即每个down-up-down趋势)。
2.形态特征
为了获得独特的呼吸特征,本文首先在每个呼吸段进行形态学分析,以提取具有代表性的特征。对形态特征进行多维提取,得到了总共100个特征,这些特征表征了每个呼吸段的代表性模式。
3.基于模糊小波包的特点
除了形态特征外,由于身体不同部位的运动和振动(如胸廓运动、腹部运动和心跳引起的胸部振动)存在差异,系统还对每个呼吸段进行模糊小波包变换(FWPT),以构建与呼吸运动高度相关的特征。小波包变换可以实现细粒度的多分辨率(即时频)分析,以区分呼吸运动的微小差异。
八、基于呼吸的用户验证
1.用户验证方法
首先检查传入呼吸段与合法用户配置文件之间的特征距离,以识别用户并检测欺骗攻击。直观地说,如果输入的呼吸段来自用户,则特征距离应满足合法用户的配置文件。然后,选择到合法用户配置文件(即呼吸段)的最小k个距离,并对k个最小距离的平均值和预定义的阈值进行比较来检测欺骗者的存在。
2. 基于深度学习的合法用户识别
当多个用户进入系统时,本文采用基于神经网络的分类器来区分用户。DNN模型的结构如图所示,它是一个双隐层神经网络,每层有60个神经元。
在初始网络中随机选择隐藏神经元的权重。在训练该神经网络时,将根据训练集使用缩放共轭梯度(SCG)反向传播算法调整权值。
将给定呼吸特征向量输入到已经训练好的DNN模型中,第一个隐藏层中的每个神经元将它们乘以一个权重因子,并计算他们的和作为输出,第二层同样。在输出层中,利用Softmax函数计算出每个用户的后验概率,系统根据最大后验概率来识别合法用户。
3. 多段多数表决
为了确保高的验证精度,本文设计了一个多数表决过程,以结合多个部分的结果。特别是,对于多个呼吸段的用户验证或合法用户识别结果,如果大多数片段被验证/识别为一个类(例如Spoofer或特定合法用户),那么系统将遵循多数表决决定。这一过程有助于大大减少验证错误,提高系统的鲁棒性(一个系统或组织有抵御或克服不利条件的能力。)。
九、实验
十、结论
本文提出了一种利用商品WiFi设备捕获的细粒度呼吸生物特征的连续用户验证系统。 通过深入的研究,我们确定了独特的代表性CSI特征,可以最好地模拟用户的呼吸运动,通过波形形态学分析和模糊小波变换。本文还开发了一种基于深度学习的用户验证方案,以及一种独特的基于呼吸距离的Spoofer检测方法,用于识别用户和拒绝欺骗。对20名受试者和各种WiFi设备设置进行了广泛的实验,涉及不同的实际应用。 结果表明,该系统能够较高的精度验证用户,并能很好地抵御欺骗攻击。
《Continuous User Verification via Respiratory Biometrics 》
from:IEEE INFOCOM 2020 - IEEE Conference on Computer Communications