声纹技术(七):声纹技术的未来

本文探讨了声纹技术在信道变化、声纹变化和反欺诈等方面的挑战,强调了对更多数据的需求。声纹技术未来的研究方向包括对抗学习、多模态说话人识别、联邦学习和集成学习,旨在提升鲁棒性和安全性。此外,文章指出同时完成声纹分割聚类与人声分离是当前亟待解决的问题之一。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

7.1 概述

第3 章~第6 章介绍了声纹技术的主要应用,包括声纹识别、声纹分割聚类,以及基于声纹的语音识别、语音合成、语音检测、人声分离等。这些应用很多都经历过数年甚至数十年的发展,已经变得十分成熟,并且被部署到了许多商业级别的系统、产品及服务中。

本章将眼光投向更长远的未来。首先,讨论现有声纹技术所面临的诸多挑战。然后,探讨未来的声纹系统如何解决其对数据的海量需求,并介绍一些声纹领域新兴的研究方向。在这些研究方向中,包含了目前还不够成熟,但可能会在未来得到普及的应用。

7.2 声纹技术的挑战

7.2.1 对信道变化的鲁棒性

从事过声纹领域研究的人员大概都会有这样的经历,在某一类数据集上,我们可以训练出准确率很不错的模型,但是一旦该模型被用于实际应用,就会发现准确率远远达不到预期。例如,如果用LibriSpeech 数据集[97] 训练我们的声纹识别模型,即使该模型可以在LibriSpeech 的测试集上达到非常高的准确率,一旦将该模型用于电话语音或网络视频语音的声纹识别,其准确率便会大幅下降。

造成这一现象的原因,在于实际应用中,我们将面对更复杂的信道,导致应用场景与训练数据之间的信道不匹配[26]。而声纹技术所面临的一大挑战,便是其对于信道变化

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值