临床试验中的样本量估算---理论篇

本文描述的是常用的临床试验样本量估算方法及背景知识,如组数最多涉及两组、总体为正态总体、假设检验方法为Z检验或T检验。

一、临床试验中的样本量

临床试验中的样本量指的是在指定的显著性水平 α \alpha α下,以期望的统计效能 1 − β 1-\beta 1β检验出具备临床意义的差异,所需的最小的样本量。

二、样本量估算公式

样本量的估算公式主要与以下6个因素相关:

  • 临床试验设计类型
    如单样本试验、配对试验、平行对照试验
  • 临床试验评价指标类型
    定量指标:评价定量资料的指标,如平均误差,标准差;
    定性指标:评价定性资料的指标,如灵敏度、特异性
  • 假设检验的类型
    如差异性检验、优效性检验、非劣效性检验、等效性检验,不同的检验具备不同的假设形式( H 0 H_0 H0 H 1 H_1 H1
  • 假设检验的方法
    如Z检验(已知总体方差)、T检验(未知总体方差)
  • 假设检验的精度
    显著水平 α \alpha α和检验效能 1 − β 1-\beta 1β
  • 具备临床意义的偏差 δ \delta δ

2.1 单样本设计的样本量估算

2.1.1 定量指标
(1)差异性检验

检验正态总体 X ∼ N ( μ , σ 2 ) X \sim N(\mu,\sigma^2) XN(μ,σ2) 的均值 μ \mu μ 与参考值 μ 0 \mu_0 μ0 之间是否存在差异,即检验的参数为 δ = μ − μ 0 \delta=\mu-\mu_0 δ=μμ0,则样本量估算公式为:
n = ( Z α / 2 + Z β ) 2 σ 2 δ 2 (1.1a) n=\frac{(Z_{\alpha/2}+Z_{\beta})^2\sigma^2}{\delta^2} \tag{1.1a} n=δ2(Zα/2+Zβ)2σ2(1.1a)
多数情况下总体的标准差 σ \sigma σ 是未知的,所以在实际应用一般使用T检验,样本量估算公式变为:
n = ( T α / 2 + T β ) 2 s 2 δ 2 (1.1b) n=\frac{(T_{\alpha/2}+T_{\beta})^2s^2}{\delta^2} \tag{1.1b} n=δ2(Tα/2+Tβ)2s2(1.1b)
s s s 为样本标准差, δ = μ − μ 0 \delta=\mu-\mu_0 δ=μμ0 为希望检测的总体均值与参考值之间的偏差, Z α Z_\alpha Zα为上 α \alpha α分位数,即 P ( X > Z α ) = α P(X > Z_\alpha)=\alpha P(X>Zα)=α

注:公式(1.1a)(1.1b)适用于单样本设计和配对设计临床试验的样本量估算。

推导:
1、写出差异性检验的假设形式
H 0 : μ = μ 0 ; H 1 : μ ≠ μ 0 ⇒ H 0 : δ = 0 ; H 1 : δ ≠ 0 \begin{aligned} & H_0: \mu = \mu_0; \quad H_1: \mu \ne \mu_0 \\ \Rightarrow \\ & H_0: \delta = 0; \quad H_1: \delta \ne 0 \end{aligned} H0:μ=μ0;H1:μ=μ0H0:δ=0;H1:δ=0
2、写出假设检验的统计量
Z = δ ^ − δ σ / n Z=\frac{\hat{\delta}-\delta}{\sigma / \sqrt{n}} Z=σ/n δ^δ
其中 δ ^ = X ˉ − μ 0 \hat{\delta} = \bar{X} - \mu_0 δ^=Xˉμ0,因为 X ˉ ∼ N ( μ , σ 2 / n ) \bar{X} \sim N(\mu,\sigma ^2/ n) XˉN(μσ2/n),所以 δ ^ ∼ N ( μ − μ 0 , σ 2 / n ) \hat{\delta} \sim N(\mu - \mu_0,\sigma ^2/ n) δ^N(μμ0σ2/n)

3、在 H 0 H_0 H0为真的条件下( μ − μ 0 = 0 \mu - \mu_0=0 μμ0=0)进行检验
∣ ( X ˉ − μ 0 ) − 0 σ / n ∣ > Z α / 2 |\frac{(\bar{X} - \mu_0) - 0}{\sigma / \sqrt{n}}| > Z_{\alpha/2} σ/n (Xˉμ0)0>Zα/2 时,拒绝 H 0 H_0 H0;

∣ ( X ˉ − μ 0 ) − 0 σ / n ∣ < Z α / 2 |\frac{(\bar{X} - \mu_0) - 0}{\sigma / \sqrt{n}}| < Z_{\alpha/2} σ/n (Xˉμ0)0<Zα/2 时,接受 H 0 H_0 H0.

4、建立检验统计量与检验精度 α \alpha α β \beta β的关系
β = P ( 接 受 H 0 ∣ H 1 为 真 ) = P ( ∣ X ˉ − μ 0 σ / n ∣ < Z α / 2 ∣ μ = μ 0 + δ ) \begin{aligned} \beta &= P(接受H_0 | H_1为真) \\ &= P(|\frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}}| < Z_{\alpha/2} | \mu = \mu_0 + \delta) \end{aligned} β=P(H0H1)=P(σ/n Xˉμ0<Zα/2μ=μ0+δ)
上式中 δ ≠ 0 \delta \ne 0 δ=0

X ˉ − μ 0 < 0 \bar{X} - \mu_0 < 0 Xˉμ0<0 时,
P ( ∣ X ˉ − μ 0 σ / n ∣ < Z α / 2 ∣ μ = μ 0 + δ ) = P ( X ˉ − μ 0 σ / n > − Z α / 2 ∣ μ = μ 0 + δ ) = P ( X ˉ − ( μ 0 + δ ) σ / n > − Z α / 2 − δ σ / n ∣ μ = μ 0 + δ ) = P ( X ˉ − μ σ / n > − Z α / 2 − δ σ / n ) = β \begin{aligned} & P(|\frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}}| < Z_{\alpha/2} | \mu = \mu_0 + \delta) \\ &= P(\frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}} > -Z_{\alpha/2} | \mu = \mu_0 + \delta) \\ &= P(\frac{\bar{X} - (\mu_0 + \delta)}{\sigma / \sqrt{n}} > -Z_{\alpha/2} - \frac{\delta}{\sigma / \sqrt{n}} | \mu = \mu_0 + \delta) \\ &= P(\frac{\bar{X} - \mu}{\sigma / \sqrt{n}} > -Z_{\alpha/2} - \frac{\delta}{\sigma / \sqrt{n}}) \\ &= \beta \end{aligned} P(σ/n Xˉμ0<Zα/2μ=μ0+δ)=P(σ/n Xˉμ0>Zα/2μ=μ0+δ)=P(σ/n Xˉ(μ0+δ)>Zα/2σ/n δμ=μ0+δ)=P(σ/n Xˉμ>Zα/2σ/n δ)=β

Z β = − Z α / 2 − δ σ / n ⇒ n = ( Z α / 2 + Z β ) 2 σ 2 δ 2 \begin{aligned} & Z_\beta = -Z_{\alpha/2} - \frac{\delta}{\sigma / \sqrt{n}} \\ \Rightarrow & n=\frac{(Z_{\alpha/2}+Z_{\beta})^2\sigma^2}{\delta^2} \end{aligned} Zβ=Zα/2σ/n δn=δ2(Zα/2+Zβ)2σ2

X ˉ − μ 0 > 0 \bar{X} - \mu_0 > 0 Xˉμ0>0 时,同理可得,
n = ( Z α / 2 + Z β ) 2 σ 2 δ 2 n=\frac{(Z_{\alpha/2}+Z_{\beta})^2\sigma^2}{\delta^2} n=δ2(Zα/2+Zβ)2σ2

(2)优效性检验

检验正态总体的均值 μ \mu μ 是否优于参考值 μ 0 \mu_0 μ0 ,样本量估算公式为:
n = ( Z α + Z β ) 2 σ 2 ( δ − △ ) 2 (1.2a) n=\frac{(Z_{\alpha}+Z_{\beta})^2\sigma^2}{(\delta - \vartriangle)^2} \tag{1.2a} n=(δ)2(Zα+Zβ)2σ2(1.2a)
多数情况下总体的标准差 σ \sigma σ 是未知的,所以在实际应用一般使用T检验,样本量估算公式变为:
n = ( T α + T β ) 2 s 2 ( δ − △ ) 2 (1.2b) n=\frac{(T_{\alpha}+T_{\beta})^2s^2}{(\delta - \vartriangle)^2} \tag{1.2b} n=(δ)2(Tα+Tβ)2s2(1.2b)
s s s 为样本标准差, △ > 0 \vartriangle > 0 >0为优效性界值(假设为高优指标)。

注:优效性检验与差异性检验的区别在于:优效性检验不止要求总体均值与参考值之间存在差异,还要求差异大于某一阈值 △ \vartriangle

推导:
1、写出优效性检验的假设形式
H 0 : μ ≤ μ 0 ; H 1 : μ > μ 0 ⇒ H 0 : δ ≤ △ ; H 1 : δ > △ \begin{aligned} & H_0: \mu ≤ \mu_0; \quad H_1: \mu > \mu_0 \\ \Rightarrow \\ & H_0: \delta ≤ \vartriangle; \quad H_1: \delta > \vartriangle \end{aligned} H0:μμ0;H1:μ>μ0H0:δ;H1:δ
2、写出假设检验的统计量
Z = δ ^ − δ σ / n Z=\frac{\hat{\delta}-\delta}{\sigma / \sqrt{n}} Z=σ/n δ^δ
3、在 H 0 H_0 H0为真的条件下进行检验

∣ ( X ˉ − μ 0 ) − δ σ / n ∣ > Z α / 2 | \frac{(\bar{X} - \mu_0)-\delta}{\sigma / \sqrt{n}} | > Z_{\alpha / 2} σ/n (Xˉμ0)δ>Zα/2 时,拒绝 H 0 H_0 H0;

∣ ( X ˉ − μ 0 ) − δ σ / n ∣ < Z α / 2 | \frac{(\bar{X} - \mu_0)-\delta}{\sigma / \sqrt{n}} |< Z_{\alpha /2} σ/n (Xˉμ0)δ<Zα/2 时,接受 H 0 H_0 H0.

4、建立检验统计量与检验精度 α \alpha α β \beta β的关系

X ˉ − μ 0 − δ > 0 \bar{X} - \mu_0 - \delta> 0 Xˉμ0δ>0
β = P ( 接 受 H 0 ∣ H 1 为 真 ) = P ( ( X ˉ − μ 0 ) − δ σ / n < Z α / 2 ∣ μ > μ 0 + △ ) = P ( X ˉ − ( μ 0 + △ + ϵ ) σ / n < Z α / 2 + ( δ − △ − ϵ ) σ / n ∣ μ = μ 0 + △ + ϵ ) = P ( X ˉ − μ σ / n < Z α / 2 + ( δ − △ ′ ) σ / n ) = β \begin{aligned} \beta &= P(接受H_0 | H_1为真) \\ &= P(\frac{(\bar{X} - \mu_0)-\delta}{\sigma / \sqrt{n}} < Z_{\alpha / 2} |\mu > \mu_0 + \vartriangle) \\ &= P(\frac{\bar{X} -( \mu_0 + \vartriangle + \epsilon)}{\sigma / \sqrt{n}} < Z_{\alpha /2 } + \frac{(\delta - \vartriangle - \epsilon)}{\sigma / \sqrt{n}}| \mu = \mu_0 + \vartriangle + \epsilon) \\ &= P(\frac{\bar{X} -\mu}{\sigma / \sqrt{n}} < Z_{\alpha /2 } + \frac{(\delta - \vartriangle')}{\sigma / \sqrt{n}}) \\ &= \beta \end{aligned} β=P(H0H1)=P(σ/n (Xˉμ0)δ<Zα/2μ>μ0+)=P(σ/n Xˉ(μ0++ϵ)<Zα/2+σ/n (δϵ)μ=μ0++ϵ)=P(σ/n Xˉμ<Zα/2+σ/n (δ))=β

− Z β = Z α / 2 + ( δ − △ ′ ) σ / n ⇒ n = ( Z α / 2 + Z β ) 2 σ 2 ( δ − △ ′ ) 2 \begin{aligned} & -Z_\beta = Z_{\alpha /2 } + \frac{(\delta - \vartriangle')}{\sigma / \sqrt{n}} \\ \Rightarrow \\ & n=\frac{(Z_{\alpha / 2}+Z_{\beta})^2\sigma^2}{(\delta-\vartriangle')^2} \end{aligned} Zβ=Zα/2+σ/n (δ)n=(δ)2(Zα/2+Zβ)2σ2
上式中 △ ′ = △ + ϵ > 0 \vartriangle' = \vartriangle + \epsilon> 0 =+ϵ>0 ϵ \epsilon ϵ为趋向于0的正数,在计算时一般令 ϵ = 0 \epsilon=0 ϵ=0

X ˉ − μ 0 − δ < 0 \bar{X} - \mu_0 - \delta < 0 Xˉμ0δ<0 时同理可得,
n = ( Z α / 2 + Z β ) 2 σ 2 ( δ − △ ′ ) 2 n=\frac{(Z_{\alpha / 2}+Z_{\beta})^2\sigma^2}{(\delta-\vartriangle')^2} n=(δ)2(Zα/2+Zβ)2σ2

(3)非劣效性检验

检验正态总体的均值 μ \mu μ 是否非劣于参考值 μ 0 \mu_0 μ0,样本量估算公式 同优效性试验:
n = ( Z α / 2 + Z β ) 2 σ 2 ( δ − △ ′ ) 2 (1.3a) n=\frac{(Z_{\alpha/2}+Z_{\beta})^2\sigma^2}{(\delta - \vartriangle')^2} \tag{1.3a} n=(δ)2(Zα/2+Zβ)2σ2(1.3a)
多数情况下总体的标准差 σ \sigma σ 是未知的,所以在实际应用一般使用T检验,样本量估算公式变为:
n = ( T α / 2 + T β ) 2 s 2 ( δ − △ ′ ) 2 (1.3b) n=\frac{(T_{\alpha /2}+T_{\beta})^2s^2}{(\delta - \vartriangle')^2} \tag{1.3b} n=(δ)2(Tα/2+Tβ)2s2(1.3b)
s s s 为样本标准差, △ ′ < 0 \vartriangle' < 0 <0为非劣效界值(假设为高优指标)。

(4)等效性检验

检验总体的均值 μ \mu μ 是否与参考值 μ 0 \mu_0 μ0 等效。样本量估算公式为:
n = ( Z α / 2 + Z β ) 2 σ 2 ( ∣ δ ∣ − △ ) 2 (1.4a) n=\frac{(Z_{\alpha /2 }+Z_{\beta})^2\sigma^2}{(|\delta| - \vartriangle)^2} \tag{1.4a} n=(δ)2(Zα/2+Zβ)2σ2(1.4a)


2.1.1 定性指标

定性指标与定量指标样本量估算公式的形式基本一致,唯一的区别在于方差的表示,对于定量资料,其方差为 σ 2 \sigma^2 σ2;对于定性资料,其方差为 p ( 1 − p ) p(1-p) p(1p) p p p为总体率。所谓的总体率即某一事件在总体中发生的概率,比如检测出发烧的概率,检测出房颤的概率等。

为什么对于定性资料,其总体率的方差为什么是p(1-p)?
X i X_i Xi,i=1…n为n个独立同分布的变量,其中 X i ∼ B ( 1 , p ) , P ( X i = 1 ) = p , E ( X i ) = p , D ( X i ) = p ( 1 − p ) X_i \sim B(1,p),P(X_i=1)=p,E(X_i)=p,D(X_i)=p(1-p) XiB(1,p)P(Xi=1)=pE(Xi)=pD(Xi)=p(1p).
根据中心极限定理,当n趋向无穷时, ∑ i = 1 n X i ∼ N ( n p , n p ( 1 − p ) ) \sum_{i=1}^{n}X_i \sim N(np,np(1-p)) i=1nXiN(np,np(1p)).
所以总体率为 1 n ∑ i = 1 n X i ∼ N ( p , p ( 1 − p ) / n ) \frac{1}{n}\sum_{i=1}^{n}X_i \sim N(p,p(1-p)/n) n1i=1nXiN(p,p(1p)/n)

(1)差异性检验

检验总体率 p p p 与参考值 p 0 p_0 p0 之间是否存在差异,则所需样本量估算公式为:
n = ( Z α / 2 + Z β ) 2 p ( 1 − p ) δ 2 (1.5a) n=\frac{(Z_{\alpha/2}+Z_{\beta})^2p(1-p)}{\delta^2} \tag{1.5a} n=δ2(Zα/2+Zβ)2p(1p)(1.5a)
其中 δ = p − p 0 \delta = p - p_0 δ=pp0.

(2)优效性检验

检验总体率是否优于参考值,样本量估算公式为:
n = ( Z α / 2 + Z β ) 2 p ( 1 − p ) ( δ − △ ) 2 (1.6a) n=\frac{(Z_{\alpha/2}+Z_{\beta})^2p(1-p)}{(\delta-\vartriangle)^2} \tag{1.6a} n=(δ)2(Zα/2+Zβ)2p(1p)(1.6a)

(3)非劣效性检验

检验总体率是否非劣于参考值,样本量估算公式为:
n = ( Z α / 2 + Z β ) 2 p ( 1 − p ) ( δ − △ ) 2 (1.7a) n=\frac{(Z_{\alpha/2}+Z_{\beta})^2p(1-p)}{(\delta-\vartriangle)^2} \tag{1.7a} n=(δ)2(Zα/2+Zβ)2p(1p)(1.7a)

(4)等效性检验

检验总体率是否与参考值等效,样本量估算公式为:
n = ( Z α / 2 + Z β ) 2 p ( 1 − p ) ( ∣ δ ∣ − △ ) 2 (1.8a) n=\frac{(Z_{\alpha/2}+Z_{\beta})^2p(1-p)}{(|\delta|-\vartriangle)^2} \tag{1.8a} n=(δ)2(Zα/2+Zβ)2p(1p)(1.8a)

2.2 双样本设计的样本量估算

假设试验组和对照组的样本量分别为 n 1 n_1 n1, n 2 n_2 n2, n 1 n 2 = k \frac{n_1}{n_2}=k n2n1=k

2.2.1 定量指标
(1)差异性检验

检验两个正态总体(试验组和对照组) X 1 ∼ N ( μ 1 , σ 1 2 ) , X 2 ∼ N ( μ 2 , σ 2 2 ) X_1 \sim N(\mu_1,\sigma_1^2),X_2 \sim N(\mu_2,\sigma_2^2) X1N(μ1,σ12)X2N(μ2,σ22) 的均值 μ 1 \mu_1 μ1 μ 2 \mu_2 μ2 之间是否存在差异,即检验的参数为 δ = μ 1 − μ 2 \delta=\mu_1-\mu_2 δ=μ1μ2。则样本量估算公式为:
n 2 = k + 1 k ( Z α / 2 + Z β ) 2 σ 2 δ 2 n 1 = k n 2 (2.1a) \begin{aligned} & n_2= \frac{k+1}{k} \frac{(Z_{\alpha/2}+Z_{\beta})^2\sigma^2}{\delta^2} \tag{2.1a} \\ & n_1=kn_2 \end{aligned} n2=kk+1δ2(Zα/2+Zβ)2σ2n1=kn2(2.1a)

推导:
1、写出差异性检验的假设形式
H 0 : μ 1 = μ 2 ; H 1 : μ 1 ≠ μ 2 ⇒ H 0 : δ = 0 ; H 1 : δ ≠ 0 \begin{aligned} & H_0: \mu_1 = \mu_2; \quad H_1: \mu_1 \ne \mu_2 \\ \Rightarrow \\ & H_0: \delta = 0; \quad H_1: \delta \ne 0 \end{aligned} H0:μ1=μ2;H1:μ1=μ2H0:δ=0;H1:δ=0
2、写出假设检验的统计量
Z = δ ^ − δ σ / n Z=\frac{\hat{\delta}-\delta}{\sigma / \sqrt{n}} Z=σ/n δ^δ
其中 δ ^ = X 1 ˉ − X 2 ˉ \hat{\delta} = \bar{X_1} - \bar{X_2} δ^=X1ˉX2ˉ,因为 X 1 ˉ ∼ N ( μ 1 , σ 1 2 / n 1 ) , X 2 ˉ ∼ N ( μ 2 , σ 2 2 / n 2 ) \bar{X_1} \sim N(\mu_1,\sigma_1 ^2/ n_1),\bar{X_2} \sim N(\mu_2,\sigma_2 ^2/ n_2) X1ˉN(μ1σ12/n1)X2ˉN(μ2σ22/n2),所以 δ ^ ∼ N ( μ 1 − μ 2 , σ 1 2 / n 1 + σ 2 2 / n 2 ) \hat{\delta} \sim N(\mu_1 - \mu_2,\sigma_1 ^2/ n_1 + \sigma_2 ^2/ n_2) δ^N(μ1μ2σ12/n1+σ22/n2),一般假设两总体的方差相同,即 δ ^ ∼ N ( μ 1 − μ 2 , k + 1 k σ 2 n 2 ) \hat{\delta} \sim N(\mu_1 - \mu_2, \frac{k+1}{k} \frac{\sigma ^2}{n_2}) δ^N(μ1μ2kk+1n2σ2)

3、在 H 0 H_0 H0为真的条件下( μ 1 − μ 2 = 0 \mu_1 - \mu_2=0 μ1μ2=0)进行检验

∣ ( X 1 ˉ − X 2 ˉ ) − 0 ( ( k + 1 ) / k σ / n 2 ∣ > Z α / 2 |\frac{(\bar{X_1} - \bar{X_2}) - 0}{(\sqrt{(k+1)/k} \sigma / \sqrt{n_2}}| > Z_{\alpha/2} ((k+1)/k σ/n2 (X1ˉX2ˉ)0>Zα/2 时,拒绝 H 0 H_0 H0;

∣ ( X 1 ˉ − X 2 ˉ ) − 0 ( ( k + 1 ) / k σ / n 2 ∣ < Z α / 2 |\frac{(\bar{X_1} - \bar{X_2}) - 0}{(\sqrt{(k+1)/k} \sigma / \sqrt{n_2}}| < Z_{\alpha/2} ((k+1)/k σ/n2 (X1ˉX2ˉ)0Zα/2 时,接受 H 0 H_0 H0.

4、建立检验统计量与检验精度 α \alpha α β \beta β的关系
β = P ( 接 受 H 0 ∣ H 1 为 真 ) = P ( ∣ ( X 1 ˉ − X 2 ˉ ) − ( μ 1 − μ 2 ) ( ( k + 1 ) / k σ / n 2 ∣ < Z α / 2 − ( μ 1 − μ 2 ) ( ( k + 1 ) / k σ / n 2 ∣ μ 1 − μ 2 = δ ) = P ( ∣ ( X 1 ˉ − X 2 ˉ ) − δ ( ( k + 1 ) / k σ / n 2 ∣ < Z α / 2 − δ ( ( k + 1 ) / k σ / n 2 ) \begin{aligned} \beta &= P(接受H_0 | H_1为真) \\ &= P(|\frac{(\bar{X_1} - \bar{X_2}) - (\mu_1 - \mu_2)}{(\sqrt{(k+1)/k} \sigma / \sqrt{n_2}}| < Z_{\alpha/2} - \frac{ (\mu_1 - \mu_2)}{(\sqrt{(k+1)/k} \sigma / \sqrt{n_2}} | \mu_1 - \mu_2 = \delta) \\ &= P(|\frac{(\bar{X_1} - \bar{X_2}) - \delta}{(\sqrt{(k+1)/k} \sigma / \sqrt{n_2}}| < Z_{\alpha/2} - \frac{\delta}{(\sqrt{(k+1)/k} \sigma / \sqrt{n_2}}) \end{aligned} β=P(H0H1)=P(((k+1)/k σ/n2 (X1ˉX2ˉ)(μ1μ2)<Zα/2((k+1)/k σ/n2 (μ1μ2)μ1μ2=δ)=P(((k+1)/k σ/n2 (X1ˉX2ˉ)δ<Zα/2((k+1)/k σ/n2 δ)
上式中 δ ≠ 0 \delta \ne 0 δ=0

( X 1 ˉ − X 2 ˉ ) − δ < 0 (\bar{X_1} - \bar{X_2}) - \delta < 0 (X1ˉX2ˉ)δ<0 时,
P ( ∣ ( X 1 ˉ − X 2 ˉ ) − δ ( ( k + 1 ) / k σ / n 2 ∣ < Z α / 2 − δ ( ( k + 1 ) / k σ / n 2 ) = P ( ( X 1 ˉ − X 2 ˉ ) − δ ( ( k + 1 ) / k σ / n 2 > − Z α / 2 + δ ( ( k + 1 ) / k σ / n 2 ) = β \begin{aligned} & P(|\frac{(\bar{X_1} - \bar{X_2}) - \delta}{(\sqrt{(k+1)/k} \sigma / \sqrt{n_2}}| < Z_{\alpha/2} - \frac{\delta}{(\sqrt{(k+1)/k} \sigma / \sqrt{n_2}}) \\ &= P(\frac{(\bar{X_1} - \bar{X_2}) - \delta}{(\sqrt{(k+1)/k} \sigma / \sqrt{n_2}} > -Z_{\alpha/2} + \frac{\delta}{(\sqrt{(k+1)/k} \sigma / \sqrt{n_2}}) \\ &= \beta \end{aligned} P(((k+1)/k σ/n2 (X1ˉX2ˉ)δ<Zα/2((k+1)/k σ/n2 δ)=P(((k+1)/k σ/n2 (X1ˉX2ˉ)δ>Zα/2+((k+1)/k σ/n2 δ)=β

Z β = − Z α / 2 + δ ( ( k + 1 ) / k σ / n 2 ⇒ n 2 = k + 1 k ( Z α / 2 + Z β ) 2 σ 2 δ 2 n 1 = k n 2 \begin{aligned} & Z_\beta = -Z_{\alpha/2} + \frac{\delta}{(\sqrt{(k+1)/k} \sigma / \sqrt{n_2}} \\ \Rightarrow \\ & n_2=\frac{k+1}{k} \frac{(Z_{\alpha/2}+Z_{\beta})^2\sigma^2}{\delta^2} \\ & n_1=k n_2 \end{aligned} Zβ=Zα/2+((k+1)/k σ/n2 δn2=kk+1δ2(Zα/2+Zβ)2σ2n1=kn2

( X 1 ˉ − X 2 ˉ ) − δ > 0 (\bar{X_1} - \bar{X_2}) - \delta > 0 (X1ˉX2ˉ)δ>0 时,同理可得,
n 2 = k + 1 k ( Z α / 2 + Z β ) 2 σ 2 δ 2 n 1 = k n 2 \begin{aligned} & n_2=\frac{k+1}{k} \frac{(Z_{\alpha/2}+Z_{\beta})^2\sigma^2}{\delta^2} \\ & n_1=k n_2 \end{aligned} n2=kk+1δ2(Zα/2+Zβ)2σ2n1=kn2

(2)优效性检验

检验正态总体 X 1 ∼ N ( μ 1 , σ 1 2 ) X_1 \sim N(\mu_1,\sigma_1^2) X1N(μ1,σ12) (试验组) 的均值 μ 1 \mu_1 μ1 是否优于正态总体 X 2 ∼ N ( μ 2 , σ 2 2 ) X_2 \sim N(\mu_2,\sigma_2^2) X2N(μ2,σ22) (对照组) 的均值 μ 2 \mu_2 μ2,则样本量估算公式为:
n 2 = k + 1 k ( Z α / 2 + Z β ) 2 σ 2 ( δ − △ ) 2 n 1 = k n 2 (2.2a) \begin{aligned} & n_2= \frac{k+1}{k} \frac{(Z_{\alpha/2}+Z_{\beta})^2\sigma^2}{(\delta - \vartriangle)^2} \tag{2.2a} \\ & n_1=kn_2 \end{aligned} n2=kk+1(δ)2(Zα/2+Zβ)2σ2n1=kn2(2.2a)

(3)非劣效性检验

检验正态总体 X 1 ∼ N ( μ 1 , σ 1 2 ) X_1 \sim N(\mu_1,\sigma_1^2) X1N(μ1,σ12) (试验组) 的均值 μ 1 \mu_1 μ1 是否非劣于正态总体 X 2 ∼ N ( μ 2 , σ 2 2 ) X_2 \sim N(\mu_2,\sigma_2^2) X2N(μ2,σ22) (对照组) 的均值 μ 2 \mu_2 μ2,则样本量估算公式为:
n 2 = k + 1 k ( Z α / 2 + Z β ) 2 σ 2 ( δ − △ ) 2 n 1 = k n 2 (2.3a) \begin{aligned} & n_2= \frac{k+1}{k} \frac{(Z_{\alpha/2}+Z_{\beta})^2\sigma^2}{(\delta - \vartriangle)^2} \tag{2.3a} \\ & n_1=kn_2 \end{aligned} n2=kk+1(δ)2(Zα/2+Zβ)2σ2n1=kn2(2.3a)

(4)等效性检验

检验正态总体 X 1 ∼ N ( μ 1 , σ 1 2 ) X_1 \sim N(\mu_1,\sigma_1^2) X1N(μ1,σ12) (试验组) 的均值 μ 1 \mu_1 μ1 是否等效于正态总体 X 2 ∼ N ( μ 2 , σ 2 2 ) X_2 \sim N(\mu_2,\sigma_2^2) X2N(μ2,σ22) (对照组) 的均值 μ 2 \mu_2 μ2,则样本量估算公式为:
n 2 = k + 1 k ( Z α / 2 + Z β ) 2 σ 2 ( ∣ δ ∣ − △ ) 2 n 1 = k n 2 (2.4a) \begin{aligned} & n_2= \frac{k+1}{k} \frac{(Z_{\alpha/2}+Z_{\beta})^2\sigma^2}{(|\delta| - \vartriangle)^2} \tag{2.4a} \\ & n_1=kn_2 \end{aligned} n2=kk+1(δ)2(Zα/2+Zβ)2σ2n1=kn2(2.4a)

注:对于双样本优效、非劣效和等效性检验,如果无法事先知道两总体均值之差 δ \delta δ,一般假设两总体均值相等,即令 δ = 0 \delta=0 δ=0

2.2.2 定性指标
(1)差异性检验

检验两个正态总体(试验组和对照组)总体率 p 1 p_1 p1 p 2 p_2 p2 之间是否存在差异,即检验的参数为 δ = p 1 − p 2 \delta=p_1-p_2 δ=p1p2。则样本量估算公式为:
n 2 = ( Z α / 2 + Z β ) 2 [ p 1 ( 1 − p 1 ) / k + p 2 ( 1 − p 2 ) ] δ 2 n 1 = k n 2 (2.5a) \begin{aligned} & n_2= \frac{(Z_{\alpha/2}+Z_{\beta})^2[p_1(1-p_1)/k + p_2(1-p_2)]}{\delta^2} \tag{2.5a} \\ & n_1=kn_2 \end{aligned} n2=δ2(Zα/2+Zβ)2[p1(1p1)/k+p2(1p2)]n1=kn2(2.5a)

(2)优效性检验

检验试验组总体率 p 1 p_1 p1 是否优于对照组总体率 p 2 p_2 p2 ,样本量估算公式为:
n 2 = ( Z α / 2 + Z β ) 2 [ p 1 ( 1 − p 1 ) / k + p 2 ( 1 − p 2 ) ] ( δ − △ ) 2 n 1 = k n 2 (2.6a) \begin{aligned} & n_2= \frac{(Z_{\alpha/2}+Z_{\beta})^2[p_1(1-p_1)/k + p_2(1-p_2)]}{(\delta - \vartriangle)^2} \tag{2.6a} \\ & n_1=kn_2 \end{aligned} n2=(δ)2(Zα/2+Zβ)2[p1(1p1)/k+p2(1p2)]n1=kn2(2.6a)

(3)非劣效性检验

检验试验组总体率 p 1 p_1 p1 是否非劣于对照组总体率 p 2 p_2 p2 ,样本量估算公式为:
n 2 = ( Z α / 2 + Z β ) 2 [ p 1 ( 1 − p 1 ) / k + p 2 ( 1 − p 2 ) ] ( δ − △ ) 2 n 1 = k n 2 (2.7a) \begin{aligned} & n_2= \frac{(Z_{\alpha/2}+Z_{\beta})^2[p_1(1-p_1)/k + p_2(1-p_2)]}{(\delta - \vartriangle)^2} \tag{2.7a} \\ & n_1=kn_2 \end{aligned} n2=(δ)2(Zα/2+Zβ)2[p1(1p1)/k+p2(1p2)]n1=kn2(2.7a)

(4)等效性检验

检验试验组总体率 p 1 p_1 p1 是否等效于对照组总体率 p 2 p_2 p2 ,样本量估算公式为:
n 2 = ( Z α / 2 + Z β ) 2 [ p 1 ( 1 − p 1 ) / k + p 2 ( 1 − p 2 ) ] ( ∣ δ ∣ − △ ) 2 n 1 = k n 2 (2.8a) \begin{aligned} & n_2= \frac{(Z_{\alpha/2}+Z_{\beta})^2[p_1(1-p_1)/k + p_2(1-p_2)]}{(|\delta| - \vartriangle)^2} \tag{2.8a} \\ & n_1=kn_2 \end{aligned} n2=(δ)2(Zα/2+Zβ)2[p1(1p1)/k+p2(1p2)]n1=kn2(2.8a)
注:对于双样本优效、非劣效和等效性检验,如果无法事先知道两总体率之差 δ \delta δ,一般假设两总体率相等,即令 δ = 0 \delta=0 δ=0

  • 6
    点赞
  • 54
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
### 回答1: 样本量估算公式一般是按照总体参数的精确度和样本容量的大小来确定的,一般公式为:n=(zα/2/ε)2*σ2/d2,其,zα/2是置信度为α时的临界统计量,ε是所允许的误差,σ2是总体方差,d2是所期望的精确度。 ### 回答2: 统计样本量估算是指通过计算确定在给定置信水平和预设精度下,需要多少个样本才能得出具有一定可靠性的结论。 样本量估算公式可以根据不同的统计方法和研究目的而有所差异,下面是一个常用的样本量估算公式: n = (Zα/2)^2 * p * (1 - p) / e^2 其, n代表样本量的大小, Zα/2代表在置信水平为α下的标准正态分布的分位数, p是研究某个现象或特征在总体出现的概率或比例, e是允许的误差,即预设的样本估计值与总体真值之间的最大差异。 这个公式的计算步骤如下: 1. 确定研究的置信水平和预设精度,一般常用的置信水平为95%或99%,预设精度一般根据研究的要求来确定。 2. 查找标准正态分布表,找出在置信水平为α下的分位数Zα/2。 3. 估计总体的概率或比例p,可以通过历史数据或先前的研究结果得到。 4. 确定允许的误差e,一般根据研究的需求和可接受的误差范围来确定。 5. 根据上述参数代入样本量估算公式,计算出所需的样本量n。 在实际研究样本量估算对于统计分析的准确性和结果的可靠性至关重要。样本量估算的准确性取决于对总体特征的了解和准确估计,同时需要综合考虑实际可行性和研究成本等因素,确保得到具有一定可靠性的结论。 ### 回答3: 样本量估算公式是用于确定在进行统计调查或实验时需要收集的样本数量的计算公式样本量的大小直接影响到统计结果的准确性和可靠性,因此合理地估计样本量是非常重要的。 一种常用的样本量估算公式是根据总体的特征值和期望的抽样误差来计算的。该公式如下: n = [(Z * σ) / E]^2 其,n表示所需的样本量,Z是选择的信心水平对应的标准正态分布的分位数,σ是总体的标准差,E是期望的抽样误差。 该公式的基本思想是,通过选择合适的信心水平和期望的抽样误差,根据总体的标准差来确定所需的样本大小。标准正态分布的分位数Z与信心水平有关,一般常用的是95%信心水平,对应的Z值约为1.96。总体的标准差σ可以通过已知数据或者进行样本调查获得。 需要注意的是,该公式是一个近似计算的方法,结果只是一个估计值,具体的样本量还需要结合实际情况进行调整。此外,不同的研究目的和方法也可能使用其他的样本量估算公式。 综上所述,样本量估算公式是在统计调查和实验确定所需的样本数量的一种计算方法,可以通过总体的特征值和期望的抽样误差来进行估计。该公式可以作为一个参考,帮助研究者在实践选择合适的样本量以保证统计结果的准确性和可靠性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值