Parquet 是一种开放的、列式存储格式,尤其适用于大数据处理框架,如 Apache Hadoop、Apache Spark 和 Apache Drill 等。Pandas 提供了 to_parquet
方法,该方法使得将 Pandas DataFrame 写入 Parquet 文件成为可能。这篇博客将详细讲解 to_parquet
方法,包括其作用、使用方法、参数详解、示例代码以及注意事项。
🧑 博主简介:现任阿里巴巴嵌入式技术专家,15年工作经验,深耕嵌入式+人工智能领域,精通嵌入式领域开发、技术管理、简历招聘面试。CSDN优质创作者,提供产品测评、学习辅导、简历面试辅导、毕设辅导、项目开发、C/C++/Java/Python/Linux/AI等方面的服务,如有需要请站内私信或者联系任意文章底部的的VX名片(ID:
gylzbk
)
💬 博主粉丝群介绍:① 群内初中生、高中生、本科生、研究生、博士生遍布,可互相学习,交流困惑。② 热榜top10的常客也在群里,也有数不清的万粉大佬,可以交流写作技巧,上榜经验,涨粉秘籍。③ 群内也有职场精英,大厂大佬,可交流技术、面试、找工作的经验。④ 进群免费赠送写作秘籍一份,助你由写作小白晋升为创作大佬。⑤ 进群赠送CSDN评论防封脚本,送真活跃粉丝,助你提升文章热度。有兴趣的加文末联系方式,备注自己的CSDN昵称,拉你进群,互相学习共同进步。
【Pandas】pandas.DataFrame.to_parquet详解与实战应用:将DataFrame写入Parquet格式
- 1.简介 📘
- 2.什么是 `to_parquet` 📋
- 3.为什么使用 `to_parquet` 🤔
- 4. `to_parquet` 方法详解 🔍
- 4.1 方法签名 🖊️
- 4.2 参数解释 📝
- 4.3 返回值 📤
- 4.4 示例代码 👨💻
- 4.4.1 将 DataFrame 写入 Parquet 文件 📄
- 4.4.2 使用压缩选项写入 Parquet 文件 ⏩
- 4.5 进阶使用 🚀
- 4.5.1 分区存储 🌐
- 4.5.2 写入远程 Parquet 文件 🗂️
- 4.5.3 包含索引写入 Parquet 文件 📜
- 5.注意事项 ⚠️
- 6.参考资料 📚
- 7.结论 🏁
1.简介 📘
Parquet 是一种开放的、列式存储格式,尤其适用于大数据处理框架,如 Apache Hadoop、Apache Spark 和 Apache Drill 等。Pandas 提供了 to_parquet
方法,该方法使得将 Pandas DataFrame 写入 Parquet 文件成为可能。这篇博客将详细讲解 to_parquet
方法,包括其作用、使用方法、参数详解、示例代码以及注意事项。
2.什么是 to_parquet
📋
to_parquet
是 Pandas 提供的方法,用于将 DataFrame 写入 Parquet 文件。这种格式提供了高速的读写性能和强大的压缩能力,特别适合处理大数据集,并且被多种大数据处理框架广泛支持。
3.为什么使用 to_parquet
🤔
使用 Parquet 格式将 DataFrame 写入文件有以下几个优点:
- 高效性:Parquet 格式提供了极高的读写性能,非常适合处理大数据集。
- 便捷性:将 DataFrame 写入 Parquet 文件非常简单,方便后续读取和分析。
- 兼容性:Parquet 格式被多种大数据处理框架广泛支持,便于数据交换和处理。
4. to_parquet
方法详解 🔍
4.1 方法签名 🖊️
DataFrame.to_parquet(path, engine='auto', compression='snappy', index=None, partition_cols=None, storage_options=None, **kwargs)
4.2 参数解释 📝
-
path
: 类型:str, path object, file-like object。说明:Parquet 文件的路径。 -
engine
: 类型:{‘auto’, ‘pyarrow’, ‘fastparquet’}, default=‘auto’。说明:指定写入 Parquet 文件所使用的引擎。可以选择 ‘pyarrow’ 或 ‘fastparquet’。如果为 ‘auto’,将根据可用的引擎自动选择。 -
compression
: 类型:{‘snappy’, ‘gzip’, ‘brotli’, None}, default=‘snappy’。说明:指定 Parquet 文件的压缩方式。支持 ‘snappy’、‘gzip’、‘brotli’ 和 ‘None’。 -
index
: 类型:bool 类型或 None, default=None。说明:是否写入 DataFrame 的索引。如果为 None,并且 DataFrame 的索引为 RangeIndex,则不会写入索引。 -
partition_cols
: 类型:list, default=None。说明:分区列的名称列表。如果指定了,数据将会基于这些列进行分区存储。 -
storage_options
: 类型:dict, default=None。说明:传递给下层文件系统的存储选项,例如 S3 等远程文件系统。 -
kwargs
: 类型:其他参数。说明:传递给指定引擎的附加参数。
4.3 返回值 📤
to_parquet
方法没有返回值。数据将被写入指定的 Parquet 文件路径。
4.4 示例代码 👨💻
4.4.1 将 DataFrame 写入 Parquet 文件 📄
首先,将一个简单的 DataFrame 写入 Parquet 文件。
import pandas as pd
# 创建一个示例 DataFrame
df = pd.DataFrame({
'Name': ['Alice', 'Bob', 'Charlie'],
'Age': [25, 30, 35],
'Score': [90, 85, 88]
})
# 将 DataFrame 写入 Parquet 文件
df.to_parquet('data.parquet')
print("DataFrame 已写入 Parquet 文件 'data.parquet' 中。")
4.4.2 使用压缩选项写入 Parquet 文件 ⏩
接下来,将一个 DataFrame 以不同的压缩方式写入 Parquet 文件。
# 将 DataFrame 写入 Parquet 文件,并使用 GZIP 压缩
df.to_parquet('data_gzip.parquet', compression='gzip')
print("DataFrame 已使用 GZIP 压缩写入 Parquet 文件 'data_gzip.parquet' 中。")
4.5 进阶使用 🚀
4.5.1 分区存储 🌐
分区存储可以将大数据集按指定列进行分区,以便提高读取性能和管理效率。
# 将 DataFrame 按 Age 列分区存储
df.to_parquet('data_partitioned.parquet', partition_cols=['Age'])
print("DataFrame 已按 Age 列分区存储到 Parquet 文件 'data_partitioned.parquet' 中。")
4.5.2 写入远程 Parquet 文件 🗂️
我们可以通过设置存储选项,将 DataFrame 写入远程 Parquet 文件(例如在 S3 上)。
# 将 DataFrame 写入 S3 上的 Parquet 文件
storage_options = {
'anon': True
}
df.to_parquet('s3://bucket_name/data.parquet', storage_options=storage_options)
print("DataFrame 已写入远程 Parquet 文件 's3://bucket_name/data.parquet' 中。")
4.5.3 包含索引写入 Parquet 文件 📜
在某些情况下,可能需要将 DataFrame 的索引写入 Parquet 文件。
# 将 DataFrame 写入 Parquet 文件,并显式写入索引
df.to_parquet('data_with_index.parquet', index=True)
print("DataFrame(包括索引)已写入 Parquet 文件 'data_with_index.parquet' 中。")
5.注意事项 ⚠️
- 文件路径:确保提供的文件路径是正确的,否则将会抛出错误。
- 引擎兼容性:确保安装了所需的引擎(
pyarrow
或fastparquet
),并且与 Pandas 版本兼容。 - 数据一致性:写入 Parquet 文件前,确保 DataFrame 中的数据完整和一致。
6.参考资料 📚
7.结论 🏁
Pandas 的 to_parquet
方法是一个高效且灵活的工具,能够将 DataFrame 数据快速写入 Parquet 文件。通过本文的详细讲解和示例,相信你已经掌握了 to_parquet
方法的基础使用方法和进阶技巧。