11、决策支持系统中实现有意义人类控制的反思性混合智能

决策支持系统中实现有意义人类控制的反思性混合智能

引言

在大众媒体中,人工智能(AI)系统能够在大多数任务上超越并取代人类的说法越来越多。比如,语言生成器能写出连贯的文章,自动驾驶汽车能提升道路安全性。然而,这些说法忽视了AI系统在正确识别、评估和契合人类固有概念(如道德价值观、社会规范、情感和创造力)方面的局限性。若坚持用机器取代人类,未来可能会严重侵犯基本人权,危及民主,加剧政治两极分化,出现操纵和虚假信息等问题。

自主性是讨论的核心概念。从道德和政治哲学角度看,自主性强调个人的自我治理能力;从技术角度看,自主性指人工智能体在无需人类指导的情况下独立运行的能力。我们从混合(人类与AI)系统的视角看待自主性,即人类智力由人工智能体增强而非取代。要实现这一点,有意义的人类控制至关重要。

一个重要问题是:人类如何对设计为自主运行的AI系统保持控制?我们认为,必须从社会技术视角来考虑自主性概念,不仅要关注人类和AI智能体的功能,还要关注其认知、社会和道德(无)能力,以使AI智能体成为人类相互依存的队友,从而实现有意义的人类控制。

考虑到有意义人类控制的追踪和追溯条件,AI智能体需要跟踪道德原因,即监测并适应动态环境中的新情况。但追溯道德原因需要人类对系统行为有道德理解,因此智能体不应独立执行此类任务。在意外和道德挑战的情况下,人类应进行适当的道德反思以找到可接受的解决方案。这就需要某种形式的反思性混合智能(RHI)。

反思这一主题在计算机科学和哲学等多个领域都有讨论。从计算机科学角度,自我反思通常指系统持续监测和改进自身行为的能力;从伦理角度,(自我)反思的目标是在各种行动选项中做出合理选择。在本文中,我们考虑混合(人类 + AI)对一组道德价

基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构与权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络与滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性或外界扰动的实际控制系统中,提升控制精度与鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析与仿真验证相结合。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值