0107无穷小的比较-函数与极限

1 定义

无穷小之比的比较,反应了不同无穷小趋于零的“快慢”程度。

如果 lim ⁡ β α = 0 \lim\frac{\beta}{\alpha}=0 limαβ=0,那么就说 β \beta β是比 α \alpha α高阶的无穷小,记做 β = o ( α ) \beta=o(\alpha) β=o(α);

如果 lim ⁡ β α = ∞ \lim\frac{\beta}{\alpha}=\infty limαβ=,那么就说 β \beta β是比 α \alpha α低阶的无穷小;

如果 lim ⁡ β α = c ≠ 0 \lim\frac{\beta}{\alpha}=c\not= 0 limαβ=c=0,那么就说 β \beta β α \alpha α是同阶无穷小;

如果 lim ⁡ β α k = c ≠ 0 , k > 0 \lim\frac{\beta}{\alpha^k}=c\not= 0,k\gt 0 limαkβ=c=0,k>0,那么就说 β \beta β是关于 α \alpha α k k k阶的无穷小;

如果 lim ⁡ β α = 1 \lim\frac{\beta}{\alpha}=1 limαβ=1,那么就说 β \beta β α \alpha α是等价无穷小,记做 β \beta β~ α \alpha α;

2 性质

无穷小的等价关系。

  1. 自反性, α ∼ α \alpha\sim\alpha αα
  2. 对称性, α ∼ β ⇒ β ∼ α \alpha\sim\beta\Rightarrow\beta\sim\alpha αββα
  3. 传递性, α ∼ β , β ∼ γ ⇒ α ∼ γ \alpha\sim\beta,\beta\sim\gamma\Rightarrow\alpha\sim\gamma αβ,βγαγ

证明:
对称性 已知 lim ⁡ β α = 1 lim ⁡ α β = lim ⁡ 1 β α = 1 , 所以 β ∼ α 传递性 已知 α ∼ β , β ∼ γ ,即 lim ⁡ β α = 1 , lim ⁡ γ β = 1 lim ⁡ γ α = lim ⁡ γ β ⋅ β α = 1 所以 α ∼ γ 对称性 \\ 已知\lim\frac{\beta}{\alpha}=1 \\ \lim\frac{\alpha}{\beta}=\lim\frac{1}{\frac{\beta}{\alpha}}=1,所以 \beta\sim\alpha \\ 传递性 \\ 已知\alpha\sim\beta,\beta\sim\gamma,即 \\ \lim\frac{\beta}{\alpha}=1,\lim\frac{\gamma}{\beta}=1 \\ \lim\frac{\gamma}{\alpha}=\lim\frac{\gamma}{\beta}\cdot\frac{\beta}{\alpha}=1 \\ 所以\alpha\sim\gamma 对称性已知limαβ=1limβα=limαβ1=1,所以βα传递性已知αβ,βγ,即limαβ=1,limβγ=1limαγ=limβγαβ=1所以αγ

3 定理1

β 与 α \beta与\alpha βα是等价无穷小的充分必要条件为 β = α + o ( α ) \beta=\alpha+o(\alpha) β=α+o(α)

证明:
⇒ 必要性 设 α ∼ β , 则 lim ⁡ β − α α = lim ⁡ ( β α − 1 ) = 0 , 因此 β − α = o ( α ) 即 β = α + o ( α ) ⇐ 充分性 设 β = α + o ( α ) ,则 lim ⁡ β α = lim ⁡ α + o ( α ) α = lim ⁡ [ 1 + o ( α ) α ] = 1 因此 α ∼ β \Rightarrow 必要性\\ 设\alpha\sim\beta,则 \\ \lim\frac{\beta-\alpha}{\alpha}=\lim(\frac{\beta}{\alpha}-1)=0, \\ 因此\beta-\alpha=o(\alpha)即\beta=\alpha+o(\alpha) \\ \Leftarrow 充分性 \\ 设\beta=\alpha+o(\alpha),则 \\ \lim\frac{\beta}{\alpha}=\lim\frac{\alpha+o(\alpha)}{\alpha}=\lim[1+\frac{o(\alpha)}{\alpha}]=1 \\ 因此\alpha\sim\beta 必要性αβ,limαβα=lim(αβ1)=0,因此βα=o(α)β=α+o(α)充分性β=α+o(α),则limαβ=limαα+o(α)=lim[1+αo(α)]=1因此αβ

  • 注:用等价无穷小可以给出函数的近似表达式,即 β ≈ α \beta\approx\alpha βα,误差为 o ( α ) o(\alpha) o(α)

4 定理2

定理2也称等价无穷小的替换定理。

α ∼ α ^ , β ∼ β ^ \alpha\sim\hat\alpha,\beta\sim\hat\beta αα^,ββ^,且 lim ⁡ β ^ α ^ \lim\frac{\hat\beta}{\hat\alpha} limα^β^存在,则 lim ⁡ β α = lim ⁡ β ^ α ^ \lim\frac{\beta}{\alpha}=\lim\frac{\hat\beta}{\hat\alpha} limαβ=limα^β^

证明:
lim ⁡ β α = lim ⁡ ( β ^ β ⋅ β α ⋅ α α ^ ) = lim ⁡ β ^ α ^ \lim\frac{\beta}{\alpha}=\lim(\frac{\hat\beta}{\beta}\cdot\frac{\beta}{\alpha}\cdot\frac{\alpha}{\hat\alpha})=\lim\frac{\hat\beta}{\hat\alpha} limαβ=lim(ββ^αβα^α)=limα^β^

  • 注意
    • 前提: lim ⁡ β ^ α ^ \lim\frac{\hat\beta}{\hat\alpha} limα^β^存在,如果不存在,则不成立。
    • 求两个无穷小之比的极限时,分子和分母都可以用等价无穷小来替换。

5 常用等价无穷小

当 x → 0 时 sin ⁡ x ∼ x tan ⁡ x ∼ x arcsin ⁡ x ∼ x arctan ⁡ x ∼ x 1 − cos ⁡ x ∼ 1 2 x 2 e x − 1 ∼ x a x − 1 ∼ x ln ⁡ a ln ⁡ ( 1 + x ) ∼ x ( 1 + x ) α − 1 ∼ α x ( α ∈ R ) 当x\to 0时 \\ \sin x\sim x \quad \tan x\sim x\quad \arcsin x\sim x\quad \arctan x\sim x \\ 1-\cos x\sim \frac{1}{2}x^2 \\ e^x-1\sim x\quad a^x-1\sim x\ln a \\ \ln(1+x)\sim x\quad (1+x)^\alpha-1\sim\alpha x(\alpha\in R) x0sinxxtanxxarcsinxxarctanxx1cosx21x2ex1xax1xlnaln(1+x)x(1+x)α1αx(αR)

  • 注意:x可替换为f(x),f(x)为无穷小。示例 sin ⁡ 2 x ∼ 2 x \sin 2x\sim 2x sin2x2x
  • 有些等价无穷小前面已经证明,未证明的在学习初等函数连续性之后给与证明。

6 例题

例1  lim ⁡ x → 0 sin ⁡ 3 x tan ⁡ 4 x = lim ⁡ x → 0 3 x 4 x = 3 4 \lim\limits_{x\to 0}\frac{\sin 3x}{\tan 4x}=\lim\limits_{x\to 0}\frac{3x}{4x}=\frac{3}{4} x0limtan4xsin3x=x0lim4x3x=43

例2   lim ⁡ x → 0 e 2 x − 1 sin ⁡ 3 x = lim ⁡ x → 0 2 x 3 x = 2 3 \lim\limits_{x\to 0}\frac{e^{2x}-1}{\sin 3x}=\lim\limits_{x\to 0}\frac{2x}{3x}=\frac{2}{3} x0limsin3xe2x1=x0lim3x2x=32

例3 $ 当x\to 0时,$    $ (1+x)^\frac{1}{n}-1\sim\frac{1}{n}x$ 

证明:
分子有理化相关公式: a n − 1 = ( a − 1 ) ( a n − 1 + a n − 2 + ⋯ + 1 ) a n − b n = ( a − b ) ( a n − 1 + a n − 2 b + a n − 3 b 2 + ⋯ + a b n − 2 + b n − 1 ) , 所以 ( 1 + x ) 1 n − 1 = ( 1 + x ) n n − 1 ( 1 + x ) n − 1 n + ( 1 + x ) n − 2 n + ⋯ + 1 = x ( 1 + x ) n − 1 n + ( 1 + x ) n − 2 n + ⋯ + 1 lim ⁡ x → 0 ( 1 + x ) 1 n − 1 1 n x = lim ⁡ x → 0 n ( 1 + x ) n − 1 n + ( 1 + x ) n − 2 n + ⋯ + 1 = 1 , 因此当 x → 0 时,有 ( 1 + x ) 1 n − 1 ∼ 1 n x 分子有理化相关公式:\\ a^n-1=(a-1)(a^{n-1}+a^{n-2}+\cdots+1) \\ a^n-b^n=(a-b)(a^{n-1}+a^{n-2}b+a^{n-3}b^2+\cdots+ab^{n-2}+b^{n-1}),所以 \\ (1+x)^\frac{1}{n}-1 = \frac{(1+x)^\frac{n}{n}-1}{ (1+x)^\frac{n-1}{n}+(1+x)^\frac{n-2}{n}+\cdots+1}= \frac{x}{ (1+x)^\frac{n-1}{n}+(1+x)^\frac{n-2}{n}+\cdots+1}\\ \lim\limits_{x\to 0}\frac{(1+x)^\frac{1}{n}-1}{\frac{1}{n}x} = \lim\limits_{x\to 0}\frac{n}{ (1+x)^\frac{n-1}{n}+(1+x)^\frac{n-2}{n}+\cdots+1} = 1, \\ 因此当x\to 0时,有 (1+x)^\frac{1}{n}-1\sim\frac{1}{n}x 分子有理化相关公式:an1=(a1)(an1+an2++1)anbn=(ab)(an1+an2b+an3b2++abn2+bn1),所以(1+x)n11=(1+x)nn1+(1+x)nn2++1(1+x)nn1=(1+x)nn1+(1+x)nn2++1xx0limn1x(1+x)n11=x0lim(1+x)nn1+(1+x)nn2++1n=1,因此当x0时,有(1+x)n11n1x
例4:  lim ⁡ x → 0 ( 1 + x 2 ) 1 3 − 1 1 − cos ⁡ x = lim ⁡ x → 0 1 3 x 2 1 2 x 2 = 2 3 \lim\limits_{x\to 0}\frac{(1+x^2)^\frac{1}{3}-1}{1-\cos x}=\lim\limits_{x\to 0}\frac{\frac{1}{3}x^2}{\frac{1}{2}x^2}=\frac{2}{3} x0lim1cosx(1+x2)311=x0lim21x231x2=32

例5: lim ⁡ x → 0 x − 1 x ln ⁡ x = lim ⁡ x → 0 x − 1 x ( x − 1 ) = 1 \lim\limits_{x\to 0}\frac{x-1}{x\ln x}=\lim\limits_{x\to 0}\frac{x-1}{x(x-1)}=1 x0limxlnxx1=x0limx(x1)x1=1

例6: lim ⁡ x → 0 tan ⁡ x sin ⁡ x e x 3 − 1 = lim ⁡ x → 0 tan ⁡ x ( 1 − cos ⁡ x ) x 3 = lim ⁡ x → 0 x ⋅ ( 1 2 x 2 ) x 3 = 1 2 \lim\limits_{x\to 0}\frac{\tan x\sin x}{e^{x^3}-1}=\lim\limits_{x\to 0}\frac{\tan x(1-\cos x)}{x^3}=\lim\limits_{x\to 0}\frac{x\cdot(\frac{1}{2}x^2)}{x^3}=\frac{1}{2} x0limex31tanxsinx=x0limx3tanx(1cosx)=x0limx3x(21x2)=21

  • 注意事项:

    • 等价无穷小求极限时,对相乘或者相除的因子可替换,而对于相加减的部分不能随意替换。

    • 相加减替换条件
      若 lim ⁡ β 1 α 存在, lim ⁡ β 2 α 存在,且 β 1 ∼ β 1 ‘ , β 2 ∼ β 2 ‘ ,则 lim ⁡ β 1 + β 2 α = lim ⁡ β 1 α + lim ⁡ β 2 α = lim ⁡ β 1 ‘ + β 2 ‘ α 若 \lim\frac{\beta_1}{\alpha}存在,\lim\frac{\beta_2}{\alpha}存在,且\beta_1\sim\beta_1^‘,\beta_2\sim\beta_2^‘ ,则 \\ \lim\frac{\beta_1+\beta_2}{\alpha}=\lim\frac{\beta_1}{\alpha}+\lim\frac{\beta_2}{\alpha}=\lim\frac{\beta_1^‘+\beta_2^‘}{\alpha} limαβ1存在,limαβ2存在,且β1β1,β2β2,则limαβ1+β2=limαβ1+limαβ2=limαβ1+β2

例7: lim ⁡ x → 0 ( cot ⁡ x − e 2 x sin ⁡ x ) = lim ⁡ x → 0 ( cos ⁡ x sin ⁡ x − e 2 x − 1 sin ⁡ x − 1 sin ⁡ x ) = lim ⁡ x → 0 ( cos ⁡ x − 1 sin ⁡ x − e 2 x − 1 sin ⁡ x ) = − 2 \lim\limits_{x\to 0}(\cot x-\frac{e^{2x}}{\sin x})=\lim\limits_{x\to 0}(\frac{\cos x}{\sin x}-\frac{e^{2x}-1}{\sin x}-\frac{1}{\sin x})=\lim\limits_{x\to 0}(\frac{\cos x-1}{\sin x}-\frac{e^{2x}-1}{\sin x})=-2 x0lim(cotxsinxe2x)=x0lim(sinxcosxsinxe2x1sinx1)=x0lim(sinxcosx1sinxe2x1)=2

  • 注意事项2:
    • 不是所有的无穷小都可以比较

示例: lim ⁡ x → + ∞ f ( x ) = lim ⁡ x → + ∞ 1 x = 0 , lim ⁡ x → + ∞ g ( x ) = lim ⁡ x → + ∞ sin ⁡ x x = 0 , 则 lim ⁡ x → + ∞ g ( x ) f ( x ) = lim ⁡ x → + ∞ sin ⁡ x 不存在 \lim\limits_{x\to+\infty}f(x)=\lim\limits_{x\to+\infty}\frac{1}{x}=0,\lim\limits_{x\to+\infty}g(x)=\lim\limits_{x\to+\infty}\frac{\sin x}{x}=0,则\lim\limits_{x\to+\infty}\frac{g(x)}{f(x)}=\lim\limits_{x\to+\infty}\sin x 不存在 x+limf(x)=x+limx1=0,x+limg(x)=x+limxsinx=0,x+limf(x)g(x)=x+limsinx不存在

6 后记

❓QQ:806797785

⭐️文档笔记地址:https://gitee.com/gaogzhen/math

参考:

[1]同济大学数学系.高等数学 第七版 上册[M].北京:高等教育出版社,2014.7.P52~p56.

[1]【梨米特】同济七版《高等数学》全程教学视频|纯干货知识点解析,应该是全网最细|微积分 | 高数[CP/OL].2020-04-16.p8.

本项目是一个基于SSM(Spring+SpringMVC+MyBatis)后端框架与Vue.js前端框架开发的疫情居家办公系统。该系统旨在为居家办公的员工提供一个高效、便捷的工作环境,同时帮助企业更好地管理远程工作流程。项目包含了完整的数据库设计、前后端代码实现以及详细的文档说明,非常适合计算机相关专业的毕设学生和需要进行项目实战练习的Java学习者。 系统的核心功能包括用户管理、任务分配、进度跟踪、文件共享和在线沟通等。用户管理模块允许管理员创建和管理用户账户,分配不同的权限。任务分配模块使项目经理能够轻松地分配任务给团队成员,并设置截止日期。进度跟踪模块允许员工实时更新他们的工作状态,确保项目按计划进行。文件共享模块提供了一个安全的平台,让团队成员可以共享和协作处理文档。在线沟通模块则支持即时消息和视频会议,以增强团队之间的沟通效率。 技术栈方面,后端采用了Spring框架来管理业务逻辑,SpringMVC用于构建Web应用程序,MyBatis作为ORM框架简化数据库操作。前端则使用Vue.js来实现动态用户界面,搭配Vue Router进行页面导航,以及Vuex进行状态管理。数据库选用MySQL,确保数据的安全性和可靠性。 该项目不仅提供了一个完整的技术实现示例,还为开发者留下了扩展和改进的空间,可以根据实际需求添加新功能或优化现有功能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

gaog2zh

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值