无穷小的比较(o(f(x))的意义)

前置知识:无穷小量和无穷大量

无穷小的比较

f ( x ) , g ( x ) f(x),g(x) f(x),g(x)为同一变化过程下的无穷小

lim ⁡ f ( x ) g ( x ) = { 0 , f ( x ) 是 比 g ( x ) 高 阶 的 无 穷 小 , 记 作 f ( x ) = o ( g ( x ) ) k , f ( x ) 与 g ( x ) 同 阶 无 穷 小 ( k ≠ 0 , 1 ) 1 , f ( x ) 与 g ( x ) 等 价 无 穷 小 , 记 作 f ( x ) ∼ g ( x ) \lim\dfrac{f(x)}{g(x)}= \left\{\begin{matrix} 0,f(x)是比g(x)高阶的无穷小,记作 f(x)=o(g(x)) \\ \\ k,f(x)与g(x)同阶无穷小(k\neq 0,1) \qquad\qquad\qquad \quad \\ \\ 1,f(x)与g(x)等价无穷小,记作f(x)\sim g(x)\qquad\quad \end{matrix}\right. limg(x)f(x)=0,f(x)g(x)f(x)=o(g(x))k,f(x)g(x)(k=0,1)1,f(x)g(x)f(x)g(x)

lim ⁡ f ( x ) g k ( x ) = l ≠ 0 \lim\dfrac{f(x)}{g^k(x)}=l\neq 0 limgk(x)f(x)=l=0,则称 f ( x ) f(x) f(x) g ( x ) g(x) g(x) k k k阶无穷小。


常见的等价无穷小

x → 0 x\rightarrow 0 x0

  • x ∼ sin ⁡ x ∼ tan ⁡ x ∼ arcsin ⁡ x ∼ arctan ⁡ x ∼ l n ( 1 + x ) ∼ e x − 1 x\sim \sin x \sim \tan x \sim \arcsin x \sim \arctan x \sim ln(1+x) \sim e^x-1 xsinxtanxarcsinxarctanxln(1+x)ex1
  • 1 − cos ⁡ x ∼ 1 2 x 2 1 − c o s a x ∼ a 2 x 2 1-\cos x \sim \frac12x^2 \quad 1-cos^a x \sim \frac a2 x^2 1cosx21x21cosax2ax2
  • 1 + x − 1 ∼ 1 2 x ( 1 + x ) a − 1 ∼ a x \sqrt{1+x}-1\sim \frac12x \quad (1+x)^a-1 \sim ax 1+x 121x(1+x)a1ax
等价无穷小的使用
  • 前提: x → 0 x\rightarrow 0 x0
  • x x x可用整体替换
  • 乘积可换,但加减时要慎用

例题

题1

lim ⁡ x → 0 1 − cos ⁡ x x sin ⁡ x \lim\limits_{x\rightarrow 0}\dfrac{1-\cos x}{x\sin x} x0limxsinx1cosx

解:原式 = lim ⁡ x → 0 1 2 x 2 x ⋅ x = 1 2 =\lim\limits_{x\rightarrow 0}\dfrac{\frac 12x^2}{x\cdot x}=\dfrac 12 =x0limxx21x2=21


题2

lim ⁡ x → 0 e x 2 − 1 x sin ⁡ x \lim\limits_{x\rightarrow 0}\dfrac{e^{x^2}-1}{x\sin x} x0limxsinxex21

解:原式 = lim ⁡ x → 0 x 2 x ⋅ x = 1 =\lim\limits_{x\rightarrow 0}\dfrac{x^2}{x\cdot x}=1 =x0limxxx2=1


题3

lim ⁡ x → 0 ( 1 − 1 2 x 2 ) 2 3 − 1 x ln ⁡ ( 1 + x ) \lim\limits_{x\rightarrow 0}\dfrac{(1-\frac 12x^2)^{\frac 23}-1}{x\ln(1+x)} x0limxln(1+x)(121x2)321

解:原式 = lim ⁡ x → 0 2 3 ⋅ ( − 1 2 x 2 ) x ⋅ x = lim ⁡ x → 0 − 1 3 x 2 x 2 = − 1 3 =\lim\limits_{x\rightarrow 0}\dfrac{\frac 23\cdot(-\frac 12x^2)}{x\cdot x}=\lim\limits_{x\rightarrow 0}\dfrac{-\frac 13x^2}{x^2}=-\dfrac 13 =x0limxx32(21x2)=x0limx231x2=31


题4

lim ⁡ x → 0 1 + tan ⁡ x − 1 + sin ⁡ x x ln ⁡ ( 1 + x 2 ) \lim\limits_{x\rightarrow 0}\dfrac{\sqrt{1+\tan x}-\sqrt{1+\sin x}}{x\ln(1+x^2)} x0limxln(1+x2)1+tanx 1+sinx

解:原式 = lim ⁡ x → 0 ( 1 + tan ⁡ x − 1 + sin ⁡ x ) ( 1 + tan ⁡ x + 1 + sin ⁡ x ) x ⋅ x 2 ( 1 + tan ⁡ x + 1 + sin ⁡ x ) =\lim\limits_{x\rightarrow 0}\dfrac{(\sqrt{1+\tan x}-\sqrt{1+\sin x})( \sqrt{1+\tan x}+\sqrt{1+\sin x})}{x\cdot x^2(\sqrt{1+\tan x}+\sqrt{1+\sin x})} =x0limxx2(1+tanx +1+sinx )(1+tanx 1+sinx )(1+tanx +1+sinx )

= lim ⁡ x → 0 tan ⁡ x − sin ⁡ x x 3 ( 1 + tan ⁡ x + 1 + sin ⁡ x ) \qquad \qquad =\lim\limits_{x\rightarrow 0}\dfrac{\tan x-\sin x}{x^3(\sqrt{1+\tan x}+\sqrt{1+\sin x})} =x0limx3(1+tanx +1+sinx )tanxsinx

= 1 2 lim ⁡ x → 0 tan ⁡ x − sin ⁡ x x 3 \qquad \qquad =\dfrac 12\lim\limits_{x\rightarrow 0}\dfrac{\tan x-\sin x}{x^3} =21x0limx3tanxsinx

= 1 2 lim ⁡ x → 0 tan ⁡ x ( 1 − cos ⁡ x ) x 3 \qquad \qquad =\dfrac12\lim\limits_{x\rightarrow 0}\dfrac{\tan x(1-\cos x)}{x^3} =21x0limx3tanx(1cosx)

= 1 2 lim ⁡ x → 0 x ⋅ 1 2 x 2 x 3 \qquad \qquad =\dfrac 12\lim\limits_{x\rightarrow 0}\dfrac{x\cdot \frac 12x^2}{x^3} =21x0limx3x21x2

= 1 2 × 1 2 \qquad \qquad =\dfrac 12\times \dfrac 12 =21×21

= 1 4 \qquad \qquad =\dfrac 14 =41


总结

  • o ( f ( x ) ) o(f(x)) o(f(x))表示 f ( x ) f(x) f(x)的高阶无穷小
  • 要学会灵活使用等价无穷小替换
  • 3
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值